NORTH SYDNEY GIRLS HIGH SCHOOL

2006

YEAR 11 EXAMINATION

Preliminary Mathematics
 \section*{General Instructions}

- Reading Time -5 minutes
- Working Time -2 hours
- Write using black or blue pen
- Board approved calculators may be used
- All necessary working should be shown in every question

Total Marks - 84
Attempt Questions 1-7
All questions are of equal value

NAME: \qquad TEACHER: \qquad
STUDENT NUMBER:

QUESTION	MARK
1	$/ 12$
2	$/ 12$
3	$/ 12$
4	$/ 12$
5	$/ 12$
6	$/ 12$
7	$/ 12$
TOTAL	$/ 84$

Total Marks - 84
Attempt Questions 1-7
All questions are of equal value
Begin each question on a NEW PAGE.

Question 1: (12 marks)
Marks
a) Find the value of $\frac{4 \cdot 23}{\sqrt{6 \cdot 14-1 \cdot 78}}$ correct to 3 significant figures.
b) Express $0 \cdot 21$ as a fraction in its simplest form.
c) Show that $\frac{1}{3-\sqrt{2}}+\frac{1}{3+\sqrt{2}}$ is a rational number.
d) \quad Simplify $\frac{2}{3}-\frac{x-1}{4}$
e) Solve the simultaneous equations:

$$
\begin{aligned}
& x-y=2 \\
& 3 x+2 y=1
\end{aligned}
$$

f) Evaluate $\left(\frac{1}{16}\right)^{-\frac{3}{4}}$
g) Factorise $125 a-a b^{3}$
a) Simplify the expression $\frac{6}{x^{2}+6 x+5}-\frac{4}{x^{2}+5 x}$
b) Solve the inequality $|16-4 x|>8$ and graph your solution on the number line. $\mathbf{3}$
c) \quad Solve $(2 x+3)^{2}=25$
d) Factorise completely $x^{4}-x^{2}-12$
e) Find the coordinates of the centre of the circle $x^{2}+y^{2}-2 x+6 y+1=0$.
a) In the diagram, $A X\|B Y\| C Z$.
$A B=14 \mathrm{~cm} ; B C=21 \mathrm{~cm} ; X Z=30 \mathrm{~cm}$ and $X Y=x \mathrm{~cm}$.
Find the length of $X Y$ giving reasons.

b)

$\triangle L M N$ is right angled at $M . X$ lies on $L N$ such that $M X \perp L N$.
i) Prove that $\triangle L M X$ is similar to $\triangle L N M$.
ii) Hence prove that $L M^{2}=N L \times L X$.
c) Sketch each of the following, showing their important features.
i) $y=\sqrt{25-x^{2}}$
ii) $y=|2 x-1|$
iii) $y=x(x+2)(1-x)$
a) A piecemeal function is defined as

$$
f(x)= \begin{cases}-x^{2}, & x<0 \\ 5 x-4, & x \geq 0\end{cases}
$$

Evaluate $f(-2)+f(0)-f(1)$
b) State the domain of the function $y=\sqrt{2 x+5}$.
c) Sketch $y=5^{x}-3$ and hence state the range of the function.
d) Sketch the region in the number plane which $y \leq 4-x^{2}$ and $y>-2$ hold simultaneously.
e) The diagram illustrates the graph of $y=f(x)$. Copy or trace the graph onto your examination page and, on a new set of axes directly below, sketch the graph of its gradient function, $y=f^{\prime}(x)$.

a) The diagram shows the points $P(0,3)$ and $Q(6,0)$. The point M is the midpoint of $P Q$. The line $M N$ is perpendicular to $P Q$ and meets the y-axis at N.

i) Show that the gradient of $P Q$ is -_.
ii) Find the coordinates of M. 2
iii) Find the equation of $M N$.
iv) Show that the coordinates of N are $\left(0,-\frac{9}{2}\right)$. $\quad \mathbf{1}$
v) The quadrilateral $P N Q R$ is a parallelogram. Find the coordinates of R.
b) Find the perpendicular distance from the point $A(3,-2)$ to the line $y=2 x+5$.
c) Find the equation of the line which passes through the point of intersection of the lines $2 x+3 y=5$ and $3 x-4 y=7$ and which also passes through the point $(-1,3)$.
a) Find the value of θ if $0^{\circ} \leq \theta \leq 90^{\circ}$ and $\tan 20^{\circ}=\cot \left(\theta+30^{\circ}\right)$
b) If $\sin x^{\circ}=\frac{4}{5}$ and $\cos x^{\circ}<0$, find the value of $\tan x^{\circ}$.
c) Prove that $\cot ^{2} \theta\left(1-\cos ^{2} \theta\right)=\cos ^{2} \theta$
d) If $0^{\circ} \leq \theta \leq 360^{\circ}$, find all the solutions for θ for $2 \sin \theta \cos \theta-\sin \theta=0$.
e) A boat leaves port P and steams 80 nautical miles on a bearing of 110°. It then turns to a bearing of 190° and steams a further 100 nautical miles.
i) Draw a diagram illustrating this information.
ii) How far is the boat from P to the nearest nautical mile?
a) Differentiate the following:
i) $y=5 x^{2}-3 x \quad 1$
ii) $f(x)=\frac{\left(x^{2}+3\right)(5 x-1)}{x^{2}}$
b) Consider the curve $y=x+\frac{8}{x}$.
i) Find the gradient of the curve at the point P where $x=2$. 2
ii) What are the co-ordinates of P. $\quad \mathbf{1}$
iii) Find the equation of the normal to the curve at the point P. $\mathbf{2}$
c) At what point on the curve $f(x)=\frac{x^{2}}{4}-5$ is the tangent parallel to $3 x-y+2=0$?

End of paper

Solutions

Question two
d)

$$
\begin{aligned}
& m^{2}-m-12 \\
& (m-4)(m+3) \\
\therefore & \left(x^{2}-4\right)\left(x^{2}+3\right) \\
= & (x-2)(x+2)\left(x^{2}+3\right)
\end{aligned}
$$

e)

$$
\begin{gathered}
x^{2}-2 x+1+y^{2}+6 y+9=-1+1+9 \\
(x-1)^{2}+(y+3)^{2}=9 \\
\text { Centre }(1,-3)
\end{gathered}
$$

Question three
a) $\frac{A B}{B C}=\frac{x y}{y Z}$ a fanialy of parallel lanes will cut all transversal in the same ratio

$$
\begin{aligned}
\frac{14}{21} & =\frac{x}{(30-x)} \\
\frac{2}{3} & =\frac{x}{(30-x)} \\
60-2 x & =3 x \\
5 x & =60 \\
x & =12 \\
x y & =12 \mathrm{~cm}
\end{aligned}
$$

b) In $\triangle L M X, \triangle L N M$
$\angle M L X=\angle N L M$ Common
$\angle L X M=\angle L M N$ both 90°
$\therefore \Delta L M X \| \triangle L M N$ equiangular
$\frac{L M}{L N}=\frac{L X}{L M}$ ratio of sides of simple triangles

$$
\therefore L M^{2}=N L \cdot L X
$$

Question three
c) i) $y=\sqrt{25-x^{2}}$

(ii)

(iii) $y=x(x+2)(1-x)$

Question four
a) $f(-2)+f(0)-f(1)$
$\therefore=-4+-4-1$
$=-9$
b) domain $\left\{x: x \geqslant-\frac{5}{2}\right\}$
c) $\quad y=\frac{5^{x}-3}{4^{y}}$

range: $\{y: y>-3\}$

Question six
d) $2 \sin \theta \cos \theta-\sin \theta=0$ $\sin \theta(2 \cos \theta-1)=0$ $\sin \theta=0$ or $2 \cos \theta-1=0$

$$
\theta=0^{\circ}, 180^{\circ}, 360^{\circ}
$$

$$
2 \cos \theta=1
$$

$$
\cos \theta=1 / 2
$$

$$
\theta=60^{\circ}, 300^{\circ}
$$

$$
\theta=0^{\circ}, 60^{\circ}, 180^{\circ}, 300^{\circ}, 360^{\circ}
$$

e)

$$
\begin{aligned}
& d^{2}=80^{2}+100^{2}-2(80)(100) \cos 100^{\circ} \\
& d=138 \cdot 4859
\end{aligned}
$$

the distance is approx 138 nautical miles.

Question seven
a)

$$
\begin{aligned}
& y=5 x^{2}-3 x \\
& \frac{d y}{d x}=10 x-3
\end{aligned}
$$

(ii)

$$
\begin{aligned}
f(x) & =\frac{5 x^{3}-x^{2}+15 x-3}{x^{2}} \\
& =5 x-1+15 x^{-1}-3 x^{-2} \\
f^{\prime}(x) & =5-15 x^{-2}+6 x^{-3} \\
& =5-\frac{15}{x^{2}}+\frac{6}{x^{3}}
\end{aligned}
$$

bi)

$$
\text { bi) } \begin{aligned}
y & =x+8 x^{-1} \\
\frac{d y}{d x} & =1-8 x^{-2} \\
& =1-\frac{8}{x^{2}} \\
x=2, \frac{d y}{d x} & =1-\frac{8}{4} \\
& =-1
\end{aligned}
$$

the gradient at P is -1
(ii)

$$
\begin{gathered}
y=2+\frac{8}{2} \\
=6 \\
P=(2,6)
\end{gathered}
$$

(iii) gradient of normal io 1 equation io

$$
\begin{aligned}
y-6 & =1(x-2) \\
y-6 & =x-2 \\
y & =x+4
\end{aligned}
$$

c) $y=3 x+2$ gradient 3

$$
\begin{aligned}
& f(x)=\frac{1}{4} x^{2}-5 \\
& f^{\prime}(x)=\frac{1}{2} x \\
& f^{\prime}(x)=3
\end{aligned}
$$

$$
\begin{aligned}
\frac{1}{2} x & =3 \\
x & =6
\end{aligned}
$$

$$
x=6, y=4
$$

at $(6,4)$ the tangent io parallel to $3 x-y+2=0$

