

2010

YEARLY EXAMINATION

Preliminary Mathematics

General Instructions

Reading Time - 5 minutes
Working Time - 2 hours
Write using black or blue pen
Board-approved calculators may be used
All necessary working should be shown in every question

Total Marks - 84

Attempt Questions 1-7
All questions are of equal value
At the end of the examination, place your solution booklets in order and put this question paper on top. Submit ONE bundle. The bundle will be separated for marking so please ensure your name is written on each solution booklet.

Student Name:

Teacher:

	1	2a	2b	3 ab	3 c	4	5	6a	6bc	6d	7 abc	7d	Totals
P2					/6					13			/9
P3	$/ 12$												/12
P4						/12	/12				17		/31
P5				/6					17				/13
P6			/5									/5	/10
P7		17						/2					/9
	/12		/12		/12	/12	/12	/12			/12		184

Total Marks - 84
Attempt Questions 1 - 7
All questions are of equal value
Begin each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (12 Marks)

(a) Evaluate $\frac{\sin ^{2} 63^{\circ}}{\tan 14^{\circ}}$ to two significant figures.
(b) Express $\frac{x}{y}$ without negative indices if $x=a^{-2} b^{3}$ and $y=a^{5} b^{-2}$.
(c) Solve $(3-x)(4+x)>0$.
(d) Simplify $\frac{6 x^{2}+42 x}{49-x^{2}}$.
(e) Rationalise the denominator of $\frac{\sqrt{3}-1}{2 \sqrt{3}+1}$.
(f) Solve $|x-7|=3$.

Question 2 (12 Marks)

Start a new booklet.

(a) Differentiate with respect to x :
(i) $5 x^{3}+\frac{1}{4} x+3$
(ii) $\frac{x^{3}-4 x^{2}}{\sqrt{x}}$
(iii) $\frac{1}{(2 x+3)^{4}}$
(iv) $\left(x^{2}+\frac{1}{x}\right)^{2}$.
(b) (i) Find the equation of the tangent to $y=x^{3}-9 x^{2}+20 x-8$ at the point (1, 4).
(ii) For what values of x are the tangents parallel to the line $y=-4 x+3$?

Question 3 (12 Marks)

Start a new booklet.

(a) Sketch on a number plane the region defined by $0 \leq x+y \leq 1$.
(b) A function is defined as $f(x)=4-2^{-x}$.
(i) Find, in simplest form:
(α) $f\left(x^{2}\right) \quad 1$
(β) $[f(x)]^{2}$. 2
(ii) Determine if $f(x)$ is even, odd or neither. $\mathbf{1}$
(c) $A B C D$ is a parallelogram.
F and E are two points on $B C$ and $D C$ respectively such that $B F=x, D E=2 x$ and $\angle A D F=\angle B E C=\alpha$.
$F D$ meets $B E$ at G such that $D G=3 x$ and $B G=6 \mathrm{~cm}$.

(i) Prove that $\angle G D E=\angle G B F$. 2
(ii) Prove that $\triangle G D E$ is similar to $\triangle G B F$. 2
(iii) Hence find the value of x. 2

Question 4 (12 Marks)

Start a new booklet.

Below is a diagram showing a quadrilateral $A B C D$, where $A B \| C D$.

(a) Find the gradient of the line $A B$.
(b) Find the exact value of the distance $A B$.
(c) Show that the equation of the line $C D$ is $2 x-3 y+11=0$.
(d) Find the perpendicular distance from the line $C D$ to the point A.
(e) The distance between C and D is to be $\sqrt{117}$ units.
(i) Show that $(x-2)^{2}+\left(\frac{2 x+11}{3}-5\right)^{2}=117$.

1
(ii) Find the coordinates of point D, assuming $x<0$.
(f) Find the area of the quadrilateral $A B C D$.

Question 5 (12 Marks)

Start a new booklet.

(a) Simplify $\operatorname{cosec}\left(90^{\circ}-A\right) \cos \left(90^{\circ}-A\right)$.
(b) Find β in the domain $90^{\circ}<\beta<270^{\circ}$ if $2 \sin ^{2} \beta=\frac{1}{2}$. makes with the positive x-axis.
(ii) Find the acute angle that the same line makes with the y-axis.
(d) A section of rainforest is to be scoured in the search for new species. The shape is shown below.
The bearing of landmark A from landmark O is $248^{\circ} \mathrm{T}$ and is 24 km in distance. The distance from landmark A to B is 40 km and from landmark B to O is 35 km .

(i) Find the size of $\angle A O B$.
(ii) Hence or otherwise calculate the area of this section of the rainforest.
(iii) What is the bearing of landmark O from landmark B ?

Question 6 (12 Marks)

Start a new booklet.

(a) For the curve $y=a x^{2}+b x+c$ where a, b and c are constants, it is given that $y=1$ and $\frac{d y}{d x}=1$ when $x=1$. Find the relationship between a and c.
(b) (i) Sketch on the same number plane the functions $y=|x|-2$ and $y=2 x+1$.
(ii) Use your answer to (i) to solve $|x|>2 x+3$.
(c) State the domain and range of $f(x)=\sqrt{1-x^{2}}$.
(d) In the diagram below, $B A \| D F$ and $E F \| B C$.

It is also given that $B E=52, A F=14, D C=56, B D=24, E A=x$ and $F C=y$.

Find x and y, giving reasons.

Question 7 (12 Marks)

Start a new booklet.

(a) The line $2 x+3 y-13=0$ is translated 5 units up and parallel to the line.

Find the equation of this transformation.
(b) Prove the identity $\frac{\cos \theta}{1-\tan \theta}+\frac{\sin \theta}{1-\cot \theta}=\sin \theta+\cos \theta$.
(d) The diagram below shows the graph of $y=f(x)$.

(i) For which values of x is $f^{\prime}(x)>0$? $\quad 1$
(ii) Explain what happens to $f^{\prime}(x)$ for large positive values of x.
(iii) Sketch the graph $y=f^{\prime}(x)$.

YEAR 11 MATHEMATICS YEARLY - SOLUTIONS
Q1 a) $3.1841 \ldots$

$$
=3.2(2 \mathrm{sf})
$$

b) $\frac{x}{y}=\frac{a^{-2} b^{3}}{a^{5} b^{-2}}$

$$
=\frac{b^{5}}{a^{7}}
$$

c) $(3-x)(4+x)>0$

$$
\therefore-4<x<3 .
$$

$$
\text { d) } \begin{aligned}
& \frac{6 x^{2}+42 x}{49-x^{2}} \\
= & \frac{6 x(x+7)}{(7+x)(7-x)} \\
= & \frac{6 x}{7-x}
\end{aligned}
$$

$$
\text { e) } \begin{aligned}
& \frac{\sqrt{3}-1}{2 \sqrt{3}+1} \times \frac{2 \sqrt{3}-1}{2 \sqrt{3}-1} \\
= & \frac{6-\sqrt{3}-2 \sqrt{3}+1}{12-1} \\
= & \frac{7-3 \sqrt{3}}{11}
\end{aligned}
$$

f) $|x-7|=3$

$\therefore x=4,10$.
(22 a) i)

$$
\begin{aligned}
& y=5 x^{3}+\frac{1}{4} x+3 \\
& \frac{d y}{d x}=15 x^{2}+\frac{1}{4}
\end{aligned}
$$

$$
\text { ii) } \begin{aligned}
y & =\frac{x^{3}-4 x^{2}}{\sqrt{x}}=x^{5 / 2}-4 x^{3 / 2} \\
\frac{d y}{d x} & =\frac{5}{2} x^{3 / 2}-6 x^{\frac{1}{2}} \\
& =\frac{5 \sqrt{x^{3}}}{2}-6 \sqrt{x}
\end{aligned}
$$

iii)

$$
\begin{aligned}
y & =(2 x+3)^{-4} \\
\frac{d y}{d x} & =-4(2 x+3)^{-5} \times 2 \\
& =\frac{-8}{(2 x+3)^{5}}
\end{aligned}
$$

$$
\begin{align*}
\text { iv) } y & =\left(x^{2}+\frac{1}{x}\right)^{2}=x^{4}+2 x+x^{-2} \\
\frac{d y}{d x} & =4 x^{3}-2 x^{-3}+2 \\
& =4 x^{3}-\frac{2}{x^{3}}+2 \tag{1,4}
\end{align*}
$$

b) $y=x^{3}-9 x^{2}+20 x-8$
i) $\frac{d y}{d x}=3 x^{2}-18 x+20$
when $x=1, m=3(1)^{2}-18(1)+20$

$$
=5
$$

\therefore egutangent $y-4=5(x-1)$

$$
y=5 x-1
$$

ii) tangents parallel $\rightarrow m=-4$

$$
\begin{aligned}
& \therefore-4=3 x^{2}-18 x+20 \\
& 0=3 x^{2}-18 x+24 \\
&=x^{2}-6 x+8 \\
&=(x-4)(x-2) \\
& \therefore x=2 \text { and } x=4 .
\end{aligned}
$$

QB
a) sketch $x+y \geqslant 0$ and $x+y \leq 1$

b) $f(x)=4-2^{-x}$
i) α)

$$
f\left(x^{2}\right)=4-2^{-x^{2}}
$$

B)

$$
\begin{aligned}
{[f(x)]^{2} } & =\left(4-2^{-x}\right)^{2} \\
& =16-2 \times 4 \times 2^{-x}+\left(2^{-x}\right)^{2} \\
& =16-2^{1} \times 2^{2} \times 2^{-x}+2^{-2 x} \\
& =16-2^{3-x}+2^{-2 x}
\end{aligned}
$$

ii)

$$
\begin{aligned}
f(a)=4-2^{-a} \quad f(-a) & =4-2^{-(-a)} \\
& =4-2^{a}
\end{aligned}
$$

$f(a) \neq f(-a)$, nor does $f(a)=-f(-a)$
\therefore neither ad nor even.
c) 1) $\angle A B E=\angle B E C=\alpha$ (alternate $\angle s, A B / / D C$)
$\angle A B F=\angle A D E$ (opp $\angle s$ of parallelogram)

$$
\begin{aligned}
\therefore \angle A B E+\angle G B F & =\angle A D F+\angle G D E \\
\alpha+\angle G B F & =\alpha+\angle G D E \\
\therefore \angle G B F & =\angle G D E
\end{aligned}
$$

ii) In $\triangle C I D E$ \& $\triangle G B F$:
$\angle G D E=\angle G B F$ (proven above)
$\angle D G E=\angle B G F$ (vert opp $\angle s$)
$\therefore \triangle G D E \| \triangle A B F$ (equiangular).

$$
\text { iii) } \begin{aligned}
\frac{D G}{A B} & =\frac{D E}{B F} \quad \text { (corespondiy sides in } \\
\therefore \frac{3 x}{6} & =\frac{2 x}{x} \\
\frac{x}{2} & =2 \\
\therefore x & =4
\end{aligned}
$$

Q4 a)

$$
\begin{aligned}
m=\frac{\text { rise }}{\text { men }} & =\frac{6-4}{-1-(-4)} \\
& =\frac{2}{3}
\end{aligned}
$$

b)

$$
\begin{aligned}
d_{A B}^{2} & =(-1+4)^{2}+(6-4)^{2} \\
& =3^{2}+2^{2} \\
\therefore d_{A B} & =\sqrt{13} \text { units. }
\end{aligned}
$$

C)

$$
\begin{aligned}
& C D \| A B \therefore m_{C D}=\frac{2}{3} \quad C(2,5) \\
& \therefore y-5=\frac{2}{3}(x-2) \\
& 3 y-15=2 x-4 \\
& 0=2 x-3 y+11 .
\end{aligned}
$$

d)

$$
\begin{aligned}
d & =\left|\frac{a x_{1}+b y_{1}+c}{\sqrt{a^{2}+b^{2}}}\right| \\
& =\left|\frac{2(-4)-3(4)+11}{\sqrt{2^{2}+(-3)^{2}}}\right|
\end{aligned}
$$

$$
\begin{aligned}
& =\left|\frac{-8-12+11}{\sqrt{13}}\right| \\
& =\frac{9}{\sqrt{13}} \text { units }
\end{aligned}
$$

e) line $C D$:

$$
\begin{gathered}
2 x-3 y+11=0 \\
3 y=2 x+11 \\
y=\frac{2 x+11}{3}
\end{gathered}
$$

$$
c(2,5)
$$

i)
$\therefore D(x, y)$ is actually $D\left(x, \frac{2 x+11}{3}\right)$

$$
\begin{aligned}
& \therefore \quad d_{C D}^{2}=(x-2)^{2}+\left(\frac{2 x+11}{3}-5\right)^{2} \\
& \therefore \quad 117=(x-2)^{2}+\left(\frac{2 x+11}{3}-5\right)^{2}
\end{aligned}
$$

ii)
f)

$$
\begin{aligned}
A & =\frac{1}{2} h(a+b) \\
& =\frac{1}{2} \times \frac{9}{\sqrt{13}}(\sqrt{13}+\sqrt{117}) \\
& =18 \text { units }^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore 117=(x-2)^{2}+\frac{1}{9}(2 x+11-15)^{2} \\
& 1053=9(x-2)^{2}+(2 x-4)^{2} \text { * see below: } \\
& 1053=9 x^{2}-36 x+36+4 x^{2}-16 x+16 \\
& 0=13 x^{2}-52 x-1001 \\
& =x^{2}-4 x-77 \\
& =(x-11)(x+7) \\
& \begin{array}{l}
\therefore x=11 \text { or } x=-7 \\
(x<0)
\end{array} \\
& \text { ven } x=-7, y=\frac{2(-7)+11}{3}=-1 \\
& \therefore D(-7,-1) \text {. } \\
& 1053=9(x-2)^{2}+4(x-2)^{2} \\
& =13(x-2)^{2} \\
& 81=(x-2)^{2} \\
& \pm 9=x-2 \\
& x=11 \text { or }-7 \\
& \ldots(x<0) \\
& \therefore x=-7 \\
& \therefore \quad y=-1
\end{aligned}
$$

Q5

$$
\text { a) } \begin{aligned}
& \operatorname{cosec}\left(90^{\circ}-A\right) \cos \left(90^{\circ}-A\right) \\
= & \sec A \times \sin A \\
= & \frac{\sin A}{\cos A} \\
= & \tan A .
\end{aligned}
$$

b)

$$
\begin{aligned}
2 \sin ^{2} B & =\frac{1}{2} \quad 90 \ll B<270^{\circ} . \\
\sin ^{2} B & =\frac{1}{4} \\
\therefore \sin B & = \pm \frac{1}{2} \quad \\
\text { related } & =30^{\circ} \\
\therefore B & =150^{\circ}, 210^{\circ} .
\end{aligned}
$$

C)

ii) Let acute $<=a$

$$
\begin{aligned}
\therefore a+90^{\circ}+ & (180-\theta)^{\circ}=180^{\circ} \quad(\text { anglesun } \Delta) \\
a & =\theta-90^{\circ} \\
& =111^{\circ} 48^{\prime}-90^{\circ} \\
\therefore \text { acute }< & =21^{\circ} 48^{\prime}
\end{aligned}
$$

d) i) we cosine rule: $\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$

$$
\begin{aligned}
\therefore \cos \angle A O B & =\frac{24^{2}+35^{2}-40^{2}}{2 \times 24 \times 35} \\
& =\frac{201}{1650} \\
\therefore \angle A O B & =83^{\circ} 7^{\circ} \text { or } 83.1^{\circ}
\end{aligned}
$$

ii)

$$
\begin{aligned}
A & =\frac{1}{2} a b \sin C \\
& =\frac{1}{2} \times 24 \times 35 \times \sin 83^{\circ} 8^{\prime} \\
& =417 \mathrm{~m}^{2}\left(\text { neonest } \mathrm{m}^{2}\right)
\end{aligned}
$$

iii)

$$
\begin{aligned}
\angle N O B & =248^{\circ}-83^{\circ} 8^{\prime} \\
& =164^{\circ} 52^{\prime} \\
\therefore \theta & =180-164^{\circ} 52^{\prime} \quad(\operatorname{coint} \angle 5) \\
& =15^{\circ} 8^{\prime}
\end{aligned}
$$

\therefore Bearing of O

$$
\begin{aligned}
B & =360^{\circ}-15^{\circ} 8^{\prime} \\
& =344^{\circ} 52^{\prime} \mathrm{T}
\end{aligned}
$$

Q6 a)

$$
\begin{array}{ll|l}
\text { a) } y=a x^{2}+b x+c & \therefore \frac{d y}{d x}=2 a x+b . \\
\text { den } x=1, y=1 & \text { hen } x=1, \frac{d y}{d x}=1 \\
\therefore \quad 1=a(1)^{2}+b(1)+c & \therefore 1=2 a(1)+b \\
1 & =a+b+c & 1=2 a+b
\end{array}
$$

So, $a+b+c=2 a+b \Rightarrow a=c$.
b) i)

ii) $|x|-2>2 x+1$ is identical to $|x|>2 x+3$
\uparrow
graphical solution: $x<-1$.
(Think: "when is the absolute value graph above the straight line?")
c) domain:

$$
\begin{aligned}
& \quad 1-x^{2} \geqslant 0 \\
& \quad(1-x)(1+x) \geqslant 0 \\
& \therefore \quad-1 \leqslant x \leqslant 1 .
\end{aligned}
$$

range: $0 \leq y \leq 1$.
d) $\frac{y}{14}=\frac{56}{24} \quad \begin{gathered}\text { (parallel lines presence ratios, } \\ B A / D F)\end{gathered}$

$$
\therefore y=32^{2 / 3} .
$$

$\frac{x}{52}=\frac{14}{y} \quad$ (parallel lines preserve ratios, $B C / / E F)$

$$
\therefore x=22 \frac{2}{7}
$$

Q7 a) Sunits up \Rightarrow yintercept moves up 5 .

$$
\begin{gathered}
2 x+3 y-13=0 \\
3 y=-2 x+13 \\
y=-\frac{2}{3} x+\frac{13}{3}
\end{gathered}
$$

\therefore now line:

$$
\begin{aligned}
y & =-\frac{2}{3} x+\frac{13}{3}+5 \\
& =-\frac{2}{3} x+\frac{28}{3}
\end{aligned}
$$

ie, $\quad 2 x+3 y-28=0$.
b)

$$
\begin{aligned}
\text { LIS } & =\frac{\cos \theta}{1-\tan \theta}+\frac{\sin \theta}{1-\cot \theta} \\
& =\frac{\cos \theta}{1-\frac{\sin \theta}{\cos \theta}}+\frac{\sin \theta}{1-\frac{\cos \theta}{\sin \theta}} \\
& =\frac{\cos ^{2} \theta}{\cos \theta-\sin \theta}+\frac{\sin ^{2} \theta}{\sin \theta-\cos \theta} \\
& =\frac{\cos ^{2} \theta-\sin ^{2} \theta}{\cos ^{2} \theta-\sin \theta} \\
& =\frac{(\cos \theta-\sin \theta)(\cos \theta+\sin \theta)}{\cos \theta-\sin \theta} \\
& =\cos \theta+\sin \theta \\
& =R+15
\end{aligned}
$$

$$
\text { c) } \begin{aligned}
& \lim _{x \rightarrow 3} \frac{x^{3}-27}{3-x} \\
= & \lim _{x \rightarrow 3} \frac{(x-3)\left(x^{2}+3 x+9\right)}{3-x} \\
= & \lim _{x \rightarrow 3}-\left(x^{2}+3 x+9\right) \\
= & -\left(3^{2}+3(3)+9\right) \\
= & -27 .
\end{aligned}
$$

d) i) $f^{\prime}(x)>0$ for $-1<x<2$ only.
ii) $f^{\prime}(x)$ is approaching zero (The gradient is approaching 0) ie $f^{\prime}(x) \rightarrow 0$.

