

2011

YEARLY EXAMINATION

Preliminary Mathematics

General Instructions

Reading Time - 5 minutes
Working Time -2 hours
Write using black or blue pen
Board-approved calculators may be used All necessary working should be shown in every question.

Total Marks - 84

Attempt Questions 1-7
All questions are of equal value.
At the end of the examination, place your solution booklets in order and put this question paper on top. Submit ONE bundle. The bundle will be separated for marking so please ensure your name is written on each solution booklet.

Student Name:

Teacher:

QUESTION	MARK
1	$/ 12$
2	$/ 12$
3	$/ 12$
4	$/ 12$
5	$/ 12$
6	$/ 12$
7	$/ 12$
TOTAL	$/ 84$

Begin each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (12 Marks) Use a SEPARATE writing booklet.
(a) Evaluate $\frac{\cos 92^{\circ} 9^{\prime}}{\tan 130^{\circ}}$ correct to three significant figures.
(b) Rationalise the denominator of $\frac{2 \sqrt{3}}{3-\sqrt{7}}$.

Express your answer in simplest form.
(c) Simplify $\frac{\frac{a}{b}+1}{1+\frac{b}{a}}$.
(d) Solve $|2 x-1|=5$.
(e) Simplify $\frac{\left(6 x^{3} y\right)^{2}}{6 x^{2} y^{4}}$.
(f) Solve $x^{2} \leq 2 x$. 2

Question 2 (12 Marks) Use a SEPARATE writing booklet.
In the diagram below, A and C are the points $(-4,-2)$ and $(2,6)$ respectively.
Lines $A B$ and $B C$ are perpendicular and intersect at B.

NOT TO SCALE
(a) Find the equation of the line $A B$, given that it passes through the origin.
(b) The line $B C$ is perpendicular to $A B$. Find the equation of line $B C$.
(c) Hence, or otherwise, find the coordinates of B.

1

2
(d) Find the coordinates of M, the midpoint of $A C$.

1
(e) Find the distance $A M$ and hence show that $A M=M B$.
(f) Find the coordinates of point D that makes quadrilateral $A B C D$ a rectangle.
(g) Explain why a circle can be drawn through A, B, C and D, with its centre at M.
(h) Write down the equation of this circle.

Question 3 (12 Marks) Use a SEPARATE writing booklet.
(a) The diagram below shows an equilateral triangle, $\triangle A B C$, with $A P=B Q=C R$.

(i) Prove that $\triangle A P R$ and $\triangle B Q P$ are congruent.
(ii) Show that $\angle B P Q+\angle A P R=120^{\circ}$.
(iii) Hence prove that $\triangle P Q R$ is equilateral.
(b) The diagram below shows a lighthouse at Q and 40 km from P.

The bearing of the lighthouse, at Q, from P is $115^{\circ} \mathrm{T}$.
R is a headland, 30 km from Q and on a bearing of $220^{\circ} \mathrm{T}$ from Q.

(i) Find the size of $\angle P Q R$, correct to the nearest degree.
(ii) Find the distance from P to R, correct to 2 decimal places.
(iii) Find the bearing of R from P.

Question 4 (12 Marks) Use a SEPARATE writing booklet.
(a) Differentiate with respect to x :
(i) $x^{5}-2 x^{\frac{3}{2}}$

1
(ii) $(1-3 x)^{-2}$

2
(iii) $\frac{x}{2}(2 x-5)^{3}$
(iv) $\frac{x-2}{4-x^{3}}$

2
(b) Given the function $f(x)=x^{2}-3 x-3$, find the values of b for which $f^{\prime}(b)=f(b)$.
(c) (i) Find $\frac{d y}{d x}$ where $y=\frac{x-\sqrt{x}}{\sqrt{x}}$.
(ii) For $x>0$, explain why every tangent has a positive gradient.

Question 5 (12 Marks) Use a SEPARATE writing booklet.
(a) Simplify $\frac{\sin \left(90^{\circ}-\theta\right)}{1+\cot ^{2}\left(90^{\circ}-\theta\right)}$.
(b) Find the exact value of $\sec 210^{\circ}$.
(c) Show that $\frac{\cos ^{3} \theta}{\sin \theta}+\sin \theta \cos \theta=\cot \theta$.
(d) Solve $2 \sin ^{3} \theta=\sin \theta$ for $0^{\circ} \leq \theta \leq 360^{\circ}$.
(e) A function is defined as $f(x)=x+\frac{1}{x}$.
(i) Simplify $[f(x)]^{2}-f\left(x^{2}\right)$.
(ii) Determine whether $f(x)$ is even, odd or neither.

Question 6 (12 Marks) Use a SEPARATE writing booklet.
(a) (i) Find the equation of the line, L, that passes through the point of intersection, $A, \quad 3$ of the lines.

$$
l_{1}: 5 x+y-6=0 \text { and } l_{2}: 2 x-3 y+1=0
$$

and also passes through the point $B(3,-2)$.
(ii) Find the perpendicular distance from the origin to L.

Leave your answer in exact form.
(b) Consider the function $f(x)=x^{2} \sqrt{4 x-3}$.
(i) State the domain of the function $f(x)$.
(ii) Show that $f^{\prime}(x)=\frac{2 x(5 x-3)}{\sqrt{4 x-3}}$.
(iii) Find the equation of the tangent to $f(x)$ at the point $P(3,27)$.
(iv) State the values of x where the tangents to $f(x)$ are horizontal.

Question 7 (12 Marks) Use a SEPARATE writing booklet.
(a) On a number plane, shade the region satisfying the following inequalities.

$$
y>x^{2}+1 \text { and } y<\sqrt{16-x^{2}} .
$$

(b) The diagram below shows the graph of $y=f(x)$.

Copy this graph into your answer booklet.
(i) Find x, where $\frac{d y}{d x}>0$.
(ii) Sketch the graph $y=f^{\prime}(x)$.
(c) The diagram below shows $\triangle A B C$ with $A C=7, B C=10$ and $A B=6$. $\angle A B C=x$ and $\angle A C B=y$.

(i) Express the size of $\angle B A C$ in terms of x and y.
(ii) Hence, show that $\sin x+\sin y=\frac{13}{10} \sin (x+y)$

Solution
Question 1.
a) $\frac{\cos 92^{\circ} 9^{\prime}}{\tan 130^{\circ}}=0.031479 \ldots$
$\therefore 0.0315$ (to 3sigfig)

$$
\text { b) } \begin{aligned}
& \frac{2 \sqrt{3}}{3-\sqrt{7}} \times \frac{3+\sqrt{7}}{3+\sqrt{7}} \\
= & \frac{6 \sqrt{3}+2 \sqrt{21}}{9-7} \\
= & 3 \sqrt{3}+\sqrt{21}
\end{aligned}
$$

c)

$$
\frac{\frac{a+b}{b}}{\frac{a+b}{a}}=\frac{a}{b}
$$

d)

$$
\begin{gathered}
2 x-1= \pm 5 \\
2 x-1=5, \quad 2 x-1=-5 \\
\therefore x=3, \quad x=-2
\end{gathered}
$$

e)

$$
\begin{aligned}
\frac{\left(6 x^{3} y\right)^{2}}{6 x^{2} y^{4}} & =\frac{6^{6} x^{k^{4}} y^{4}}{6 x^{4} y^{4}} \\
& =\frac{6 x^{4}}{y^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { f) } x^{2} \leq 2 x \\
& x^{2}-2 x \leq 0 \\
& x(x-2) \leqslant 0 \\
& \therefore 0 \leqslant x \leqslant 2
\end{aligned}
$$

a)

$$
\begin{aligned}
& m_{A O}=\frac{2}{4}=\frac{1}{2} \\
& \therefore y=\frac{1}{2} x
\end{aligned}
$$

b)

$$
\begin{aligned}
& m_{B C}=-2 \quad(\because B C+A B) \\
& C(2,6)
\end{aligned}
$$

\therefore eq. of the line $B C$ is

$$
\begin{gathered}
y-6=-2(x-2) \\
y=-2 x+10
\end{gathered}
$$

c) B is the intersection of $A B$ \& $B C$

$$
\left.\begin{array}{c}
\left.\begin{array}{l}
y=\frac{1}{2} x \\
y=-2 x+10
\end{array}\right\} \quad \therefore \text { solve simultaneously. } \\
\frac{1}{2} x=-2 x+10 \\
\frac{5}{2} x=10 \\
\therefore x=4
\end{array}\right\} \begin{array}{r}
\quad \therefore y=2 \\
\therefore B(4,2)
\end{array}
$$

d) $M(-1,2)$
e)

$$
\begin{aligned}
d_{A M}= & \sqrt{(-4+1)^{2}+(-2-2)^{2}} \\
= & \sqrt{9+16} \\
= & 5 \text { units } \\
& \therefore A M=M B
\end{aligned}
$$

f) $D(-6,2)$
$D M=M B$
g)

$$
A M=M C=M B=M D=5 \text { units }
$$

$$
\text { radii of the circle, centre } M \text {. }
$$

h) radius $=$ quits centre $M(-1,2)$

$$
\therefore(x+1)^{2}+(y-2)^{2}=25
$$

(a) (i)

$$
\begin{array}{ll}
A B=A C & \text { (stoles of the equilateral } \triangle \text {) } \\
A P=R C & \text { (given) } \\
B P=A R & \text { (lay subtraction) }
\end{array}
$$

$$
\begin{aligned}
& \text { In } \triangle A P R \text { \& } \triangle B C O \\
& A R=B P \text { (Proven above) } \\
& A P=B Q \text { (given) } \\
& \angle P A R=\angle Q B P \text { (angles of equilciteral } 0 \text {) } \\
& \therefore \quad \triangle A P R \equiv \angle B Q P(S A S)
\end{aligned}
$$

(ii) $\angle A P R=C P Q B$ (matching angles of cong O_{S})

$$
\begin{aligned}
& \ln \quad \triangle B P Q \\
& \angle B P Q+\angle P Q B+60^{\circ}=180^{\circ} \quad(\angle \operatorname{sum} \text { of } \triangle) \\
& \quad \angle B P Q+\angle P Q B=120^{\circ} \\
& \therefore \angle B P Q+\angle A P R=120^{\circ}
\end{aligned}
$$

(iii) $\angle O P R=180{ }^{\circ}-(\angle B P Q+\angle A P R) \quad(\angle 5$ on a straight tie)

$$
\therefore \quad \angle Q P R=60^{\circ}
$$

$P Q=P R$ (intoning sides of cong Δs in part (i))
$\therefore \quad \triangle P Q R$ is sos with apex angle 60.
$\therefore \triangle P Q R$ is equilateral.
(b) (T) $\angle P Q R=25^{\circ}+50^{\circ}=75^{\circ}$
(ii) cosine Rule

$$
\begin{aligned}
x^{2} & =30^{2}+40^{2}-2 \times 30 \times 40 \times \cos 75^{\circ} \\
& \therefore x=43,35 \text { kn (to } 2 \mathrm{dp})
\end{aligned}
$$

(iii) bet $\angle R P Q=\Theta$

$$
\begin{aligned}
& \frac{\sin \theta}{30}=\frac{\sin 75}{43.35} \\
& \sin \theta=\frac{\sin 75}{43.35}
\end{aligned}
$$

$\theta=420$ (to the nearest degrees)
\therefore beaning from R from P is 157.7

Question 4.
(a) (i) $\frac{d}{d x}\left(x^{5}-2 x^{\frac{i}{2}}\right)=5 x^{4}-3 x^{\frac{1}{2}}$
(ii)

$$
\begin{aligned}
\frac{d}{d x}(1-3 x)^{-2} & =-2(1-3 x)^{-3} \times-3 \\
& =6(1-3 x)^{-3}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\frac{d}{d x} \frac{x}{2}(2 x-5)^{3} & =\frac{1}{2}(2 x-5)^{3}+\frac{x}{2} \times 6(2 x-5)^{2} \\
& =\frac{(2 x-5)^{3}}{2}+\frac{6 x(2 x-5)^{2}}{2} \\
& =\frac{(2 x-5)^{2}(8 x-5)}{2}
\end{aligned}
$$

(iv)

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{x-2}{4-x^{3}}\right) & =\frac{\left(4-x^{3}\right)-(x-2)\left(-3 x^{2}\right)}{\left(4-x^{3}\right)^{2}} \\
& =\frac{4-x^{3}+3 x^{3}-6 x^{2}}{\left(4-x^{3}\right)^{2}} \\
& =\frac{2 x^{3}-6 x^{2}+4}{\left(4-x^{3}\right)^{2}}
\end{aligned}
$$

(b)

$$
\begin{gathered}
f(x)=x^{2}-3 x-3 \\
f^{\prime}(x)=2 x-3 \\
\therefore \quad \\
f(b)=b^{2}-3 b-3 \\
f^{\prime}(b)=2 b-3 \\
\\
f^{\prime}(b)=f(b) \\
\therefore \quad \\
2 b-3=b^{2}-3 b-3 \\
b^{2}-5 b=0 \\
b(b-5)=0 \\
\therefore b=0,5
\end{gathered}
$$

(C)

$$
\text { (i) } \begin{aligned}
y & =\frac{x-\sqrt{x}}{\sqrt{x}} \\
y & =\frac{x}{\sqrt{x}}-1 \\
y & =\sqrt{x}-1 \\
y^{\prime} & =\frac{1}{2} x^{-\frac{1}{2}} \\
y^{\prime} & =\frac{1}{2 \sqrt{x}}
\end{aligned}
$$

(ii)

$$
\begin{gathered}
x>0 \\
\sqrt{x}>0 \\
\frac{1}{2 \sqrt{x}}>0 \\
\therefore y^{\prime}>0
\end{gathered}
$$

\therefore Has a positue gradient.

Question 5.
(a).

$$
\begin{aligned}
\frac{\sin \left(90^{\circ}-\theta\right)}{1+\cot ^{2}\left(90^{\circ}-\theta\right)} & =\frac{\cos \theta}{1+\tan ^{2} \theta} \\
& =\frac{\cos \theta}{\sec ^{2} \theta} \\
& =\cos ^{3} \theta
\end{aligned}
$$

(b)

$$
\begin{aligned}
\sec 210^{\circ} & =\frac{1}{\cos (180+30)^{\circ}} \\
& =\frac{1}{-\cos 30^{\circ}} \\
& =-\frac{2 \sqrt{3}}{3}
\end{aligned}
$$

$$
\text { (c) } \begin{aligned}
L_{H} & =\frac{\cos ^{3} \theta+\sin ^{2} \theta \cos \theta}{\sin \theta} \\
& =\frac{\cos \theta\left(\cos ^{2} \theta+\sin ^{2} \theta\right)}{\sin \theta} \\
& =\frac{\cos \theta}{\sin \theta} \\
& =\cot \theta \\
& =\text { RHS }
\end{aligned}
$$

(d)

$$
\begin{aligned}
& 2 \sin ^{3} \theta=\sin \theta \\
& 2 \sin ^{3} \theta-\sin \theta=0 \\
& \sin \theta\left(2 \sin ^{2} \theta-1\right)=0 \\
& \therefore \sin \theta=0, \\
& \theta=0^{\circ}, 180^{\circ}, 360^{\circ}, \quad \sin \theta= \pm \frac{1}{\sqrt{2}} \\
& \therefore \theta=45^{\circ}, 135^{\circ}, 225^{\circ}, 315^{\circ} \\
& \therefore \theta=05^{\circ}, 135^{\circ}, 180^{\circ}, 225^{\circ}, 315^{\circ}, 360^{\circ}
\end{aligned}
$$

(e) $f(x)=x+\frac{1}{x}$
(T)

$$
\begin{aligned}
{[f(x)]^{2} } & =\left(x+\frac{1}{x}\right)^{2} \\
& =x^{2}+2+\frac{1}{x^{2}} \\
f\left(x^{2}\right) & =x^{2}+\frac{1}{x^{2}} \\
\therefore[f(x)]^{2}-f\left(x^{2}\right) & =\left(x^{2}+2+\frac{1}{x^{2}}\right)-\left(x^{2}+\frac{1}{x^{2}}\right) \\
& =2
\end{aligned}
$$

(ii)

$$
\begin{align*}
f(x) & =x+\frac{1}{x} \\
f(-x) & =-x+\frac{1}{-x} \\
& =-\left(x+\frac{1}{x}\right) \\
& =-f(x)
\end{align*}
$$

(a) $\quad l_{1}: \quad 5 x+y-6=0 \quad l_{2}: 2 x-3 y+1=0$
(द) $5 x+y-6+k(2 x-3 y+1)=0$
Sub ($3,-2$)

$$
\begin{gathered}
15-2-6+k(6+6+1)=0 \\
7+13 k=0 \\
\therefore \quad(5 x+y-6)-\frac{7}{13}(2 x-3 y+1)=0 \\
13(5 x+y-6)-7(2 x-3 y+1)=0 \\
65 x+13 y-78-14 x+21 y-7=0 \\
51 x+34 y-85=0 \\
\therefore 3 x+2 y-5=0
\end{gathered}
$$

Alternatively Solve simultaneously
$\operatorname{sub} \quad l_{1}: y=6-5 x$ ito l_{2}

$$
\begin{aligned}
& \therefore \quad 2 x-3(6-5 x)+1=0 \\
& 17 x=17 \\
& \therefore x=1 \\
& \therefore y=1 \quad \therefore A(1,1)
\end{aligned}
$$

eq. of the line is

$$
\begin{aligned}
& y-1=\frac{-3}{2}(x-1) \\
& \therefore 3 x+2 y-5=0
\end{aligned}
$$

(ii) $(0,0)$ to $3 x+2 y-5=0$

$$
D=\frac{|0+0-5|}{\sqrt{9+4}}=\frac{5}{\sqrt{13}} \text { units }
$$

(b) $\quad f(x)=x^{2} \sqrt{4 x-3}$
(i) all real $x, \quad x \geqslant \frac{3}{4}$
(ii)

$$
\begin{aligned}
f^{\prime}(x) & =2 x(4 x-3)^{\frac{1}{2}}+x^{2} \times \frac{1}{2} \times 4 \times(4 x-3)^{-\frac{1}{2}} \\
& =2 x(4 x-3)^{\frac{1}{2}}+2 x^{2}(4 x-3)^{-\frac{1}{2}} \\
& =2 x(4 x-3)^{-\frac{1}{2}}(4 x-3+x) \\
& =2 x(4 x-3)^{-\frac{1}{2}}(5 x-3) \\
& =\frac{2 x(5 x-3)}{\sqrt{4 x-3}}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& f^{\prime}(3)=\frac{6(12)}{3}=24 \\
& \therefore y-27=24(x-3) \\
& y=24 x-45
\end{aligned}
$$

(ir)

$$
\begin{aligned}
& f^{\prime}(x)=0 \\
& \frac{2 x(5 x-3)}{\sqrt{4 x-3}}=0 \quad\left(x \neq \frac{3}{4}\right)
\end{aligned}
$$

$$
\therefore \quad x=0, \quad \frac{3}{5}
$$

BUT, these values are outside the domain from (i), so there are NO points with horizontal tangents.

Question 7.
(a) $y>x^{2}+1 \quad y<\sqrt{16-x^{2}}$

(b)

(i)

$$
x<b, \quad x>d
$$

(ii)

(C) (i) $\angle B A C+x+y=180^{\circ}$ (angle sum of \triangle)

$$
\therefore \angle B A C=180^{\circ}-(x+y)
$$

$$
\begin{aligned}
& \text { (ii) } \quad \sin \left(180^{\circ}-(x+y)\right)=\sin (x+y) \\
& \therefore \ln \triangle A B C \\
& \quad \frac{\sin x}{7}=\frac{\sin y}{6}=\frac{\sin (x+y)}{10}
\end{aligned}
$$

Non,

$$
\begin{aligned}
\frac{\sin x}{7} & =\frac{\sin (x+y)}{10} \\
\sin x & =\frac{7 \sin (x+y)}{10} \\
\frac{\sin y}{6} & =\frac{\sin (x+y)}{10} \\
\sin y & =\frac{6 \sin (x+y)}{10}
\end{aligned}
$$

$$
\begin{aligned}
\text { LHS } & =\sin x+\sin y \\
& =\frac{7 \sin (x+y)}{10}+\frac{6 \sin (x+y)}{10} \\
& =\frac{13}{10} \sin (x+y) \\
& =\operatorname{eHs} .
\end{aligned}
$$

