NORTH SYDNEY GIRLS HIGH SCHOOL

2012

YEARLY EXAMINATION

Preliminary Mathematics

General Instructions
Reading Time - 5 minutes
Working Time - 2 hours
Write using black or blue pen
Diagrams may be done in pencil
Board approved calculators may be used
All necessary working should be shown in every question.

Total marks -

Attempt Questions 1-7
All questions are of equal value.
At the end of the examination, place your solution booklets in order and place them inside this question paper.
Submit one bundle. The bundle will be separated for marking so please ensure your number is written on each solution booklet.

Student Name: \qquad
Teacher:

QUESTION	MARK
1	$/ 12$
2	$/ 12$
3	$/ 12$
4	$/ 12$
5	$/ 12$
6	$/ 12$
7	$/ 84$

Question 1 (12 marks)

(a) Find the value of $\frac{3+2^{2.5}}{\sqrt{5^{2} \times 1.5}}$ correct to three decimal places.
(b) Solve $5 m^{2}+3 m-2=0$.
(c) Express $\frac{2}{3-\sqrt{5}}$ in the form $a+b \sqrt{5}$ by rationalising the denominator.
(d) Simplify fully $\frac{x^{3}+8}{x^{2}-x-6}$.
(e) Simplify $(2 x)^{5} \cdot\left(\frac{3}{x}\right)^{-2}$, expressing your answer without negative indices.
(f) Evaluate $\sec ^{2} 30^{\circ}-\cos 180^{\circ} \quad 1$

Question 2 (12 marks). Start a new booklet.

(a) Given that $\cos \alpha=\frac{1}{4}$ and α is acute, find the exact value of $\sin ^{2} \alpha+\tan \alpha$.
(b) Simplify $\frac{a}{a+b}-\frac{b}{a^{2}-b^{2}}$.
(c) The point $Q(-2,-1)$ lies on the line k whose equation is $7 x-2 y+12=0$.

The point $R(1,3)$ lies on the line l whose equation is $3 x+y-6=0$.

(i) Find the coordinates of the point P where the lines k and l intersect 2 on the y axis.
(ii) Find the equation of the line m which joins Q and R.
(iii) Find the perpendicular distance from P to the line m. 2
(iv) Hence, or otherwise, find the exact value of the area of the triangle $P Q R$.

Question 3 (12 marks) Start a new booklet.

(a) Solve $\tan \theta=-1.2$ for $0^{\circ} \leq \theta \leq 360^{\circ}$, correct to the nearest minute.
(b) In the diagram, $\angle P D C=54^{\circ}, A B=7, A P=4$, and $B P=P D=5$.

(i) Show that $\angle A P B=102^{\circ}$ to the nearest degree.
(ii) Find the length of $D C$ to the nearest whole number.
(iii) Calculate the area of $\triangle B A P$ correct to 1 decimal place.
(c) (i) Show that the point $\left(-2,-\frac{7}{4}\right)$ lies on the curve $y=2^{x}-2$.
(ii) Sketch its graph showing all the main features.
(iii) If this graph is shifted 1 unit to the right what will its new equation be?

Question 4 (12 marks) Start a new booklet.

(a) Differentiate each of the following with respect to x. Give your answers in simplest form.
(i) $y=2 x^{3}+5 x-1$
(b) The following questions refer to the function $y=f(x)$ which has been sketched below.

(i) For which values of x is $f^{\prime}(x)<0$?
(ii) Copy or trace the graph onto your writing booklet. On a separate number 3 plane, sketch the gradient function $y=f^{\prime}(x)$.
(c) Sketch the region on the number plane that satisfies $y \geq 4-3 x-x^{2}$ and $x \geq 0$ simultaneously.

Question 5 (12 marks) Start a new booklet.

(a) (i) Find the equation of the tangent to the curve $y=x^{2}+x-3$ at the point where $x=-2$.
(ii) Find the co-ordinates of another point on this curve where the tangent is perpendicular to the tangent found in (i).
(b) Find the centre and radius of the circle $x^{2}-6 x+y^{2}+10 y=0$
(c) In the diagram, $B C$ is bisected by $A F$ at $D . C E \perp A D$ and $B F \perp D F$.

Copy or trace the diagram onto your page.

(i) Prove $\triangle B D F \equiv \triangle C D E$.
(ii) Prove $C E=B F$.

Question 6 (12 marks) Start a new booklet.

(a) (ii) Show that the equation of the normal to the curve $y=1+\frac{3}{x-1}$ at the point $(2,4)$ is $x-3 y+10=0$.
(ii) Find the angle that the normal makes with the positive x axis
(b) (i) Prove the identity $\frac{1}{\cot \theta-\cos \theta}=\frac{\tan \theta}{1-\sin \theta}$
(ii) Hence prove the identity $\frac{1}{\cot \theta-\cos \theta}=\frac{\sin \theta+\sin ^{2} \theta}{\cos ^{3} \theta}$.
(c) In the diagram $F H \| G A$ and $C H \| B A, B C=6, C E=x, E F=7$ and $F G=5$.

(i) Find the value of x, giving reasons.
(ii) Find the length of $B A$, without giving reasons.
(iii) Find the ratio of the area of triangle EHF to the area of trapezium FHAG. 1 No reasons are needed.

Question 7 (12 marks) Start a new booklet

(a) Consider the function $f(x)=\sqrt{x^{2}-5}$.
(i) State the domain of the function.
(ii) Find $f^{\prime}(x)$.
(iii) Explain why $f^{\prime}(x)$ is never zero.
(b) Sketch the curve $y=|5-2 x|$ showing all important features.
(c) Triangle $A B C$ is right-angled at C. A square of side length x is inscribed inside the triangle, as shown.

(i) State the similarity test used to show that $\triangle B D E||\mid \triangle E F A$. You do not have to complete a proof.
(ii) Prove that $x=\frac{a b}{a+b}$.
(ii) Prove that if the area of the square is to be half of the area of the triangle $A B C$, then a must equal b.

End of paper

Questron 1
a) $1.41365=1.414$
b)

$$
\begin{aligned}
& (5 m-2)(m+1)=0 \\
& m=\frac{2}{5},-1
\end{aligned}
$$

c)

$$
\begin{aligned}
& \frac{2}{3-\sqrt{5}} \times \frac{3+\sqrt{5}}{3+\sqrt{5}} \\
& 2 \frac{(3+\sqrt{5})}{9-5} \\
& =\frac{3+\sqrt{5}}{2} \\
& =\frac{3}{2}+\frac{1}{2} \sqrt{5} \text { in the form } a+b \sqrt{5}
\end{aligned}
$$

d)

$$
\begin{aligned}
& \frac{(x+2)\left(x^{2}-2 x+4\right)}{(x+2)(x-3)} \\
= & \frac{x^{2}-2 x+4}{x-3}
\end{aligned}
$$

e)

$$
\begin{aligned}
& 32 x^{5} \times \frac{x^{+2}}{9} \\
= & \frac{32 x^{7}}{9}
\end{aligned}
$$

f)

$$
\begin{aligned}
& \sec ^{2} 30^{\circ}-\cos 180^{\circ} \\
= & \left(\frac{1}{\frac{\sqrt{3}}{2}}\right)^{2}-(-1) \\
= & \frac{4}{3}+1 \\
= & \frac{7}{3}
\end{aligned}
$$

Question 2

$$
\begin{aligned}
& \cos \alpha=\frac{1}{4} \\
& \sin ^{-2} \alpha+\tan \alpha \\
& =\left[1-\left(\frac{1}{4}\right)^{2}\right]+\sqrt{15} \\
& =\frac{15}{16}+\sqrt{15}
\end{aligned}
$$

b)

$$
\begin{aligned}
& \frac{a}{a+b}-\frac{b}{(a+b)(a-b)} \\
= & \frac{a^{2}-a b-b}{(a+b)(a-b)}
\end{aligned}
$$

c) (i) If they intersect on y axis, then sub $x=0$ into dine K :

$$
\begin{gathered}
7 \times 0-2 y+12=0 \\
\therefore y=6
\end{gathered}
$$

Check $x=0, y=6$ satisfies line l :

$$
\begin{aligned}
& 3 x+y-6 \\
= & 0+6-6 \\
= & 0
\end{aligned}
$$

\therefore Lines k and t meet at $(0,6)$
(ii)

$$
\begin{aligned}
m_{Q R} & =\frac{3+1}{1+2} \\
& =\frac{4}{3}
\end{aligned}
$$

Equation of $Q R=y-3=\frac{4}{3}(x-1)$

$$
3 y-9=4 x-4
$$

$$
\therefore 4 x-3 y+5=0
$$

(iii)

$$
\begin{aligned}
d & =\frac{|4 \times 0-3 \times 6+5|}{\sqrt{4^{2}+3^{2}}} \\
& =\frac{13}{5}
\end{aligned}
$$

(ind
Area, $\triangle \triangle P Q R=1 \times 13 \times 5=6.5 \mathrm{sa}$ units

Question 3
a)

$$
\begin{aligned}
\tan \theta & =-1 \cdot 2 \quad 0 \leqslant \theta \leqslant 360^{\circ} \\
\theta & =180^{\circ}-50^{\circ} 12^{\prime}, 360^{\circ}-50^{\circ} 12^{\prime} \\
& =129^{\circ} 48^{\prime}, 309^{\circ} 45^{\prime}
\end{aligned}
$$

b) By the cosine rule

$$
\begin{aligned}
\cos \theta & =\frac{4^{2}+5^{2}-7^{2}}{2 \times 4 \times 5} \\
& =-\frac{1}{5} \\
\theta & =101.53 \\
& =102^{\circ} \text { (nearest degree) } \\
\therefore \angle A P B & =102^{\circ}
\end{aligned}
$$

(ii) $\angle D P C=102^{\circ}$ (vertically opp \angle)

$$
\begin{aligned}
\angle D C P & =180-(102+54) \\
& =24^{\circ}
\end{aligned}
$$

Using the sine mule

$$
\begin{aligned}
& \frac{D C}{\sin 102^{\circ}}=\frac{5}{\sin 24^{\circ}} \\
& D C=12 \text { (nearest whole number) }
\end{aligned}
$$

(iii) Area $B A P=\frac{1}{2} 4 \times 5 \times \sin 102^{\circ}$

$$
=9.8 \text { sq units }
$$

c) Sub $x=-2$ into $y=2^{x}-2$

$$
\begin{aligned}
& =2^{-2}-2 \\
& =\frac{1}{4}-2 \\
& =-\frac{7}{4}
\end{aligned}
$$

$\therefore\left(-2,-\frac{7}{4}\right)$ lies on $-\frac{7}{4}$ the curve.
(ii)

$$
\begin{aligned}
& y=2^{x}-2 \\
& x=0, \quad y=2^{0}-2 \\
& x=-1, \quad y=0
\end{aligned}
$$

(iii) Shifted one unit to the right: replace x with $x-1$

$$
\therefore y=2^{x-1}-2
$$

Question 4
(i)

$$
\begin{aligned}
y & =2 x^{3}+5 x-1 \\
\frac{d y}{d x} & =6 x^{2}+5
\end{aligned}
$$

(ii)

$$
\begin{aligned}
y & =\frac{7 x^{2}}{x}-\frac{3}{x} \\
& =7 x-3 x^{-1} \\
\frac{d y}{d x} & =7+3 x^{-2} \\
& =7+\frac{3}{x^{2}}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
y & =\frac{2 x+3}{1-x} \\
\frac{d y}{d x} & =\frac{(1-x)(2)-(2 x+3)(-1)}{(1-x)^{2}} \frac{d u}{d x}=2 \quad \frac{d v}{d x}=-1 \\
& =\frac{2-2 x+2 x+3}{(1-x)^{2}} \\
& =\frac{5}{(1-x)^{2}}
\end{aligned}
$$

Question 4

(ii)
(i) $f^{\prime}(x)<0$ when $b<x<d$

c)

$x \geqslant 0$ (right half plane)

Questurn 5
a) (i)

$$
\begin{aligned}
& \begin{array}{l}
y=x^{2}+x-3 \\
\frac{d y}{d x}=2 x+1 \\
\text { When } x=-2, \frac{d y}{d x}=2(-2)+1 \\
\end{array} \quad-3
\end{aligned}
$$

Equation tangent, passing through $(-2,-1)$

$$
\begin{aligned}
y+1 & =-3(x+2) \\
y & =-3 x-7 \quad \text { or } \quad 3 x+y+7=0
\end{aligned}
$$

(ii) If other tangent is perpendicular then $m=\frac{1}{3}$

Solve $\quad \frac{1}{3}=\frac{d y}{d x}$

$$
\begin{aligned}
2 x+1 & =\frac{1}{3} \\
x & =-\frac{1}{3} \\
\therefore y & =\left(-\frac{1}{3}\right)^{2}-\frac{1}{3}-3 \\
& =-3^{2 / 9} \text { or }-\frac{29}{9}
\end{aligned}
$$

The other point has co ordinates $\left(-\frac{1}{3},-3^{2} / 9\right)$
b) $\quad x^{2}-6 x+y^{2}+10 y=0$

Completing the square

$$
\begin{aligned}
& x^{2}-6 x+9+y^{2}+10 y+25=9+25 \\
& (x-3)^{2}+(y+5)^{2}=34
\end{aligned}
$$

\therefore Centre $(3,-5)$ and radius $=\sqrt{34}$
c)
(i) In $\triangle B D F \quad \triangle C D E$

$$
\begin{aligned}
& \text { In } \triangle B D F \quad \triangle C D E \\
& B D=D C \text { (given BC is bisected by AF at D) } \\
& \angle B D F=\angle C D E \text { (vertically opposite) } \\
& \angle D F B=\angle C E D \text { (both goo) } \\
& \therefore \triangle B D F \equiv \triangle C D E \text { (ASS) }
\end{aligned}
$$

(ii) $C E=B F$ (matchin gsides of congruent Δs)

Questonib
a)

$$
\begin{aligned}
y & =1+3(x-1)^{-1} \\
\frac{d y}{d x} & =-3(x-1)^{-2} \times 1 \\
& =-\frac{3}{(x-1)^{2}}
\end{aligned}
$$

$$
\text { At }(2,4), \frac{d y}{d x}=-3
$$

Equation of normal $=y-4=\frac{1}{3}(x-2) \quad m_{1} m_{2}=-1$

$$
3 y-12=x-2
$$

$$
0=x-3 y+10 \text { is required equation }
$$

(ii)

$$
\begin{aligned}
\tan \theta & =\frac{1}{3} \\
\theta & =18^{\circ} 26^{\prime} \quad \text { (nearest mince) }
\end{aligned}
$$

b) (i)

$$
\begin{aligned}
& =1 \\
& \angle H S=\frac{1}{\cot \theta-\cos \theta} \times \frac{\tan \theta}{\tan \theta} \\
& =\frac{\tan \theta}{1-\cos \theta \frac{\sin \theta}{\cos \theta}}
\end{aligned}
$$

$$
\text { (ii) } \begin{aligned}
\frac{1}{\cot \theta-\cos \theta} & =\frac{\tan \theta}{1-\sin \theta} \operatorname{ty} p a r t(i) \\
& =\frac{\frac{\sin \theta}{\cos \theta} \times \frac{1}{1-\sin \theta} \times \frac{1+\sin }{1+\sin \theta}}{} \begin{aligned}
&=\frac{\sin \theta}{\cos \theta} \times \frac{1+\sin \theta}{1-\sin ^{2} \theta} \\
&=\frac{\sin \theta+\sin ^{2} \theta}{\cos ^{3} \theta} \\
& \text { since } 1-\sin ^{2} \theta=\cos ^{2} \theta
\end{aligned}
\end{aligned}
$$

Question 6 (cont)
bc)
(i) $\frac{E F}{F G}=\frac{E H}{H A}\left(\begin{array}{c}\text { parallel lines preserve } \\ \text { ratios } H F \| A G)\end{array}\right.$ ratios, $H F \| A G$)

$$
\begin{aligned}
\therefore \frac{E F}{F G} & =\frac{E C}{C B} \\
\therefore \frac{7}{5} & =\frac{x}{6} \\
x & =8.4
\end{aligned}
$$

(ii) $L I E \frac{C H}{B A}=\frac{E C}{E B}$ (matching sides of similar Δs)

$$
\begin{aligned}
\therefore \frac{8}{B A}= & \frac{x}{6+x} \\
8(14.4) & =8.4(B A) \\
B A & =13.7 / d . p)
\end{aligned}
$$

(iii) $\frac{\text { Area } \triangle E H F}{\text { Area Trapezium } F H A G}=\frac{7^{2}}{12^{2}-7^{2}}$

$$
=\frac{49}{9}
$$

7 a) $f(x)=\left(x^{2}-5\right)^{1 / 2}$
(i) Domain: $x^{2}-5 \geqslant 0$

$$
x \leqslant-\sqrt{5} \text { of } \quad x \geqslant \sqrt{5}
$$

(ii) $f^{\prime}(x)=\frac{1}{2}\left(x^{2}-5\right)^{-1 / 2} \cdot(2 x)$

$$
=\frac{x}{\sqrt{x^{2}-5}}
$$

(iii) $f^{\prime}(x)=0$ when $x=0$ but $x=0$ is not in the domain Since $x \geq \sqrt{5}$ or $x \leqslant-\sqrt{5}$ then $f^{\prime}(x)$ is never zero.
$Q \#($ cont $)$
b) $y=|5-2 x|$ is the same as $y=|2 x-5|$

$$
=2\left|2^{1 / 2}-x\right|
$$

$$
\begin{array}{ll}
x=0, & y=5 \\
y=0, & x=2^{1 / 2}
\end{array}
$$

gradient 2 and -2

c) (i) $\triangle B D E \mid \| \triangle E F A$ (equiangular)
(ii) $\frac{a-x}{x}=\frac{x}{b-x}$

$$
\begin{gathered}
(a-x)(b-x)=x^{2} \\
a b-x(a+b)+x^{2}=x^{2} \\
a b-x(a+b)=0 \\
\cdots a b=x(a+b) \\
x=\frac{a b}{a+b}
\end{gathered}
$$

(ii) Area of square $=\frac{1}{2}$ area of triangle

$$
\begin{aligned}
x^{2} & =\frac{1}{2}\left[\frac{1}{2} \cdot a b\right] \\
\left(\frac{a b}{a+b}\right)^{2} & =\frac{1}{4} a b \\
4 a^{2} b^{2} & =a b(a+b)^{2} \\
0 & =a b(a+b)^{2}-4 a^{2} b^{2} \\
& =a b\left[a^{2}+2 a b+b^{2}-4 a b\right] \\
& =a b(a-b)^{2}
\end{aligned}
$$

