NORTH SYDNEY GIRLS HIGH SCHOOL

2014

YEARLY EXAMINATION

Preliminary Mathematics

General Instructions

Reading Time - 5 minutes
Working Time -2 hours
Write using black or blue pen
Diagrams may be done in pencil
All necessary working should be shown in every question.

Total Marks - 100
Section 1 - Q 1-7 worth 7 marks
Section 2 - Q 8-13 each worth 13 marks
At the end of the examination, place your solution booklets in order and place them inside this question paper.
Submit one bundle. The bundle will be separated for marking so please ensure your number is written on each solution booklet.

Student Name: \qquad

Student Number: \qquad

Teacher:

QUESTION	MARK
$1-7$	$/ 7$
8	$/ 12$
9	$/ 12$
10	$/ 12$
11	$/ 12$
12	$/ 12$
13	$/ 85$
TOTAL	

Section 1

7 marks
Attempt Questions 1-7
Allow about 10 minutes for this section
Use the multiple-choice answer sheet for Questions 1-7.

1. What is the correct factorisation of $8 x^{3}-27 y^{3}$?
(A) $(2 x-3 y)\left(4 x^{2}+6 x y+9 y^{2}\right)$
(B) $(2 x-3 y)\left(4 x^{2}-6 x y+9 y^{2}\right)$
(C) $(2 x-3 y)\left(4 x^{2}+12 x y+9 y^{2}\right)$
(D) $(2 x-3 y)\left(4 x^{2}-12 x y+9 y^{2}\right)$
2. What is the correct solution to the inequation $x^{2} \geq 4 x$?
(A) $x \geq 4$
(B) $x \leq-2, x \geq 2$
(C) $x \leq 0, x \geq 4$
(D) $0 \leq x \leq 4$
3. What is the value of $\lim _{x \rightarrow 10} \frac{x^{2}-100}{x-10}$?
(A) undefined
(B) 0
(C) 10
(D) 20
4. Consider the following diagram showing the line $x-2 y=-4$:

Which pair of inequations describes the shaded region?
(A) $x-2 y \leq-4$ and $y \geq 0$
(B) $x-2 y \geq-4$ and $y \geq 0$
(C) $x-2 y \leq-4$ and $x \geq 0$
(D) $x-2 y \geq-4$ and $x \geq 0$
5. Consider the following diagram:

Which statement is not necessarily true?
(A) If $B C \| D E$, then $A B: B D=A C: C E$.
(B) If $A B: B D=A C: C E$, then $B C \| D E$.
(C) If B and C are the midpoints of $A D$ and $A E$ respectively, then $B C: D E=1: 2$.
(D) If $B C: D E=1: 2$, then B and C are the midpoints of $A D$ and $A E$ respectively.
6. Which value(s) of x are the solutions of the equation $\log _{7}\left(36-x^{2}\right)-\log _{7} x=\log _{7} 5$?
(A) $x=-9$ only
(B) $x=4$ only
(C) $x=-9$ and $x=4$
(D) There are no real solutions
7. Given that $f(x)=x^{3}$ and $g(x)=\sin x$ are both ODD functions, which one of the following functions is EVEN?
(A) $h(x)=x^{3}+\sin x$
(B) $h(x)=x^{3}-\sin x$
(C) $\quad h(x)=x^{3} \times \sin x$
(D) $\quad h(x)=\sin \left(x^{3}\right)$

Section II

78 marks

Attempt Questions 8-13
Allow about 1 hour and 50 minutes for this section

Answer each question a separate writing booklet. Extra writing paper is available.
In Questions 8-13, your responses should include relevant mathematical reasoning and/or calculations.

Question 8 (13 marks)
(a) Solve the equation $\frac{x}{3}-\frac{2 x+1}{4}=5$.
(b) Write $0 . \dot{2} \dot{4}$ as a fraction in simplest terms. Show all working.
(c) Rationalise the denominator of $\frac{\sqrt{2}+4}{2 \sqrt{2}-1}$.

Write your answer in the form $a+b \sqrt{2}$, where a and b are rational.
(d) Solve the inequality $|2 x-1| \leq 5$.
(e) Find the point(s) of intersection of the line $y=1-2 x$ and the parabola $y=5-2 x-x^{2}$.
(f) Fully simplify $\frac{p q^{-1}-p^{-1} q}{p^{2} q^{-2}-p^{-2} q^{2}}$, writing your answer as a single fraction without the use of negative indices.

Question 9 (13 marks) (Use a SEPARATE writing booklet)
(a) The diagram shows the points $A(-1,0), B(1,6)$ and $C(4,5)$, and $B M \perp A C$.

(i) Show that the gradient of $A B$ is 3 .
(ii) Show that $A B \perp B C$.
(iii) Find the length of $A B$ as a simplified surd.
(iv) Show that the equation of the line $A C$ is $x-y+1=0$.
(v) Find the length of $B M$.
(vi) A line l is drawn through B and parallel to $A C$. The line l crosses
the y-axis at D. Find the area of $\triangle A D C$
(b) (i) Find the domain of the function $y=\frac{1}{\sqrt{5-x}}$.
(ii) Find the domain of the function $y=\frac{1}{\sqrt{5-x}}-\frac{1}{\sqrt{x-2}}$.

Question 10 (13 marks) (Use a SEPARATE writing booklet)
(a) (i) Solve $8^{x}=3$, giving your answer correct to three significant figures.
(ii) Write $2+\frac{1}{2} \log _{3} x$ as a single logarithm.
(b) Solve the equation $\cos 2 x=-\frac{\sqrt{3}}{2}$ for $0^{\circ} \leq x \leq 360^{\circ}$.
(c) In the following diagram, $N C$ is a vertical pole of height h standing on level ground. N lies on $A B$, a horizontal line of length 15 metres.

(i) Show that $A N=h \tan 40^{\circ}$.
(ii) By finding a similar expression for $B N$ or otherwise, find the height of the pole.
(d) $A B C D$ is a parallelogram. $A X$ bisects $\angle B A D$ and $D X$ bisects $\angle C D A$.

Let $\angle D A X=\alpha$ and $\angle A D X=\beta$.

(i) Prove that $A X \perp D X$.
(ii) Prove also that $B C=2 A B$.

Question 11 (13 marks) (Use a SEPARATE writing booklet)
(a) Differentiate:
(i) $9 x^{2}+x+2$
(ii) $\frac{3}{\sqrt{1-2 x}}$
(iii) $\frac{2 x}{1+x^{2}}$
(b) Copy the following curve $y=f(x)$ into your answer booklet.

Below this sketch, draw a sketch of the gradient function $y=f^{\prime}(x)$.
Be sure to line up the features of the two graphs.

(c) Find the equation of the normal to the curve $y=\left(\frac{x}{3}-1\right)^{3}$ at the point where $x=9$.
(d) (i) If $f(x)=x^{2}-3 x$, write down an expression for $f(x+h)-f(x)$.
(ii) Hence differentiate $f(x)=x^{2}-3 x$ by first principles.

Question 12 (13 marks) (Use a SEPARATE writing booklet)
(a) For what value(s) of x is the tangent to the curve $y=2 x+\frac{1}{x}$ perpendicular to the line $4 x+7 y=0$?
(b) Find the equation of the line that passes through the point of intersection of the lines $7 x+2 y-3=0$ and $5 x+9 y-1=0$, and which also passes through the point $(-3,4)$.
(c) In the diagram, $\angle B C A=\angle B A H=\alpha, A B=6$ and $B H=4$.

(i) Show that $\triangle A B C||\mid \triangle H B A$.
(ii) Hence or otherwise find the length of $H C$.
(d) If $f(x)=(x+1)^{2}$, solve the equation $f[f(x)]=100$.

Question 13 (13 marks) (Use a SEPARATE writing booklet)
(a) The function $f(x)$ is defined by $f(x)=x^{2}-k^{2}$ on the domain $-k \leq x \leq 2 k$.

Find the range of $f(x)$ in terms of k over this domain.
(b) (i) Prove that $\frac{\cos \theta}{\sin \theta+1}-\frac{\cos \theta}{\sin \theta-1}=2 \sec \theta$.
(ii) Hence or otherwise solve the equation $\frac{\cos \theta}{\sin \theta+1}=4+\frac{\cos \theta}{\sin \theta-1}$ for $0 \leq \theta \leq 360^{\circ}$.
(c) A ship sails for 30 nautical miles from O to A on a bearing of $049^{\circ} \mathrm{T}$.

It then turns and sails to a point $B, 50$ nautical miles away.
From B, the starting point O is observed on a bearing of $299^{\circ} \mathrm{T}$.

(i) Show that $\angle A O B=70^{\circ}$.
(ii) Show that x satisfies the quadratic equation $x^{2}-\left(60 \cos 70^{\circ}\right) x-1600=0$.
(iii) Hence find the distance of B from O, giving your answer in nautical miles correct to one decimal place.
(iv) By how many degrees did the ship turn at A ?

Year 112 Unit Yearly 2014 Solutions

Section I

1. A
2. C
3. D
4. B
5. D
6. B
7. C

Worked Solutions

2.

$$
\begin{aligned}
x^{2} & \geq 4 x \\
x^{2}-4 x & \geq 0 \\
x(x-4) & \geq 0 \\
x \leq 0, x & \leq 4
\end{aligned}
$$

3. $\lim _{x \rightarrow 10} \frac{x^{2}-100}{x-10}=\lim _{x \rightarrow 10} \frac{(x-10)(x+10)}{x-10}$

$$
=\lim _{x \rightarrow 10}(x+20)
$$

$$
=20
$$

6. Best done by substitution. But if working was required:

$$
\begin{aligned}
\log _{7}\left(36-x^{2}\right)-\log _{7} x & =\log _{7} 5 \\
\log _{7} \frac{36-x^{2}}{x} & =\log _{7} 5 \\
\frac{36-x^{2}}{x} & =5 \\
36-x^{2} & =5 x \\
x^{2}+5 x-36 & =0 \\
(x+9)(x-4) & =0 \\
x=-9,4 &
\end{aligned}
$$

Checking answers: $\quad x=-9$ leads to the log of a negative number
$\therefore x=4$ is the only solution
7. (A)
$h(-x)=(-x)^{3}+(-\sin x)$

$$
=-x^{3}-\sin x
$$

$$
=-\left(x^{3}+\sin x\right)
$$

$$
=-h(x)
$$

(B) $\quad h(-x)=(-x)^{3}-(-\sin x)$
$=-x^{3}+\sin x$
$=-\left(x^{3}-\sin x\right)$
$=-h(x)$
(C) $\quad h(-x)=(-x)^{3} \times(-\sin x)$
$=\left(-x^{3}\right) \times(-\sin x)$
$=x^{3} \sin x$
$=h(x)$
(D) $\quad h(-x)=\sin \left[(-x)^{3}\right]$

$$
\begin{aligned}
& =\sin \left(-x^{3}\right) \\
& =-\sin \left(x^{3}\right) \\
& =-h(x)
\end{aligned}
$$

\therefore (C) in the only even function

Section II

Question 8

(a) Solve the equation $\frac{x}{3}-\frac{2 x+1}{4}=5$.

$$
\begin{aligned}
\frac{x}{3}-\frac{2 x+1}{4} & =5 \\
(\times 12) 4 x-3(2 x+1) & =60 \\
4 x-6 x-3 & =60 \\
2 x & =-63
\end{aligned}
$$

$x=-\frac{63}{2}$
(b) Write $0 . \dot{2} \dot{4}$ as a fraction in simplest terms. Show all working.

Let x	$=0 . \dot{2} \dot{4}$	
$100 x$	$=24 . \dot{2} \dot{4}$	
(subtracting)	$99 x$	$=24$
x	$=\frac{24}{99}$	$x=\frac{8}{33}$

(c) Rationalise the denominator of $\frac{\sqrt{2}+4}{2 \sqrt{2}-1}$.

Write your answer in the form $a+b \sqrt{2}$, where a and b are rational.

$$
\frac{\sqrt{2}+4}{2 \sqrt{2}-1} \times \frac{2 \sqrt{2}+1}{2 \sqrt{2}+1}=\frac{4+\sqrt{2}+8 \sqrt{2}+4}{8-1}
$$

$$
=\frac{8}{7}+\frac{9}{7} \sqrt{2}
$$

(d) Solve the inequality $|2 x-1| \leq 5$

$$
\begin{array}{r}
|2 x-1| \leq 5 \\
-5 \leq 2 x-1 \leq 5 \\
-4 \leq 2 x \leq 6
\end{array}
$$

(e) Find the point(s) of intersection of the line $y=1-2 x$ and the parabola $y=5-2 x-x^{2}$

$$
\begin{aligned}
1-2 x & =5-2 x-x^{2} \\
x^{2} & =4 \\
x & = \pm 2
\end{aligned}
$$

$$
\begin{array}{lr}
(x=2) & y=-3 \\
(x=-2) & y=5
\end{array}
$$

$$
\therefore \text { Points of intersection are }(2,-3) \text { and }(-2,5)
$$

(f) Fully simplify $\frac{p q^{-1}-p^{-1} q}{p^{2} q^{-2}-p^{-2} q^{2}}$, writing your answer as a single fraction without the use of negative indices.

$$
\begin{aligned}
\frac{p q^{-1}-p^{-1} q}{p^{2} q^{-2}-p^{-2} q^{2}} & =\frac{\frac{p}{q}-\frac{q}{p}}{\frac{p^{2}}{q^{2}}-\frac{q^{2}}{p^{2}}} \times \frac{p^{2} q^{2}}{p^{2} q^{2}} \\
& =\frac{p^{3} q-p q^{2}}{p^{4}-q^{4}} \\
& =\frac{p q\left(p^{2}-q^{2}\right)}{\left(p^{2}-q^{2}\right)\left(p^{2}+q^{2}\right)}
\end{aligned}
$$

Question 9

(a) The diagram shows the points $A(-1,0), B(1,6)$ and $C(4,5)$, and $B M \perp A C$.

(i) Show that the gradient of $A B$ is 3 .

$$
\begin{aligned}
m_{A B} & =\frac{6-0}{1-(-1)} \\
& =\frac{6}{2}
\end{aligned}
$$

(ii) Show that $A B \perp B C$.

$$
\begin{aligned}
m_{B C} & =\frac{5-6}{4-1} & m_{A B} \cdot m_{B C} & =3 \cdot\left(-\frac{1}{3}\right) \\
& =-\frac{1}{3} & & =-1
\end{aligned}
$$

$$
\therefore \quad A B \perp B C
$$

(iii) Find the length of $A B$ as a simplified surd.

$$
\begin{aligned}
A B^{2} & =[1-(-1)]^{2}+(6-0)^{2} \\
& =40 \\
A B & =\sqrt{40}
\end{aligned}
$$

$$
A B=2 \sqrt{10} \text { units }
$$

(iv) Show that the equation of the line $A C$ is $x-y+1=0$.

$$
\begin{aligned}
m_{A C} & =\frac{5-0}{4-(-1)} \\
& =1
\end{aligned}
$$

$A C: \quad y-5=1(x-4)$

$$
x-y+1=0
$$

OR: Show by substituting the coordinates of A AND C into the given equation.

$$
\begin{aligned}
& A C: x-y+1=0 \quad B(1,6) \\
& B M=\frac{|1(1)-1(6)+1|}{\sqrt{1^{2}+(-1)^{2}}}
\end{aligned}
$$

(vi) A line l is drawn through B and parallel to $A C$. The line l crosses the y-axis at D. Find the area of $\triangle A D C$
$\triangle A D C$ has the same area as $\triangle A B C$ since it has the same base length $A C$, and the same perpendicular height (since $B D \| A C$).

So EITHER: $\quad A C^{2}=(4+1)^{2}+(5-0)^{2}$

$$
=50
$$

$$
A C=5 \sqrt{2}
$$

$$
\text { Area }=\frac{1}{2} \times A C \times B M
$$

$$
=\frac{1}{2} \times 5 \sqrt{2} \times 2 \sqrt{2}
$$

Area $=10$ units ${ }^{2}$

OR: $\quad B C^{2}=(4-1)^{2}+(5-6)^{2}$

$$
=10
$$

$$
B C=\sqrt{10}
$$

$$
\text { Area }=\frac{1}{2} \times A B \times B C \quad(\text { since } A B \| B C)
$$

$$
=\frac{1}{2} \times 2 \sqrt{10} \times \sqrt{10}
$$

$$
=10 \text { units }^{2}
$$

(b) (i) Find the domain of the function $y=\frac{1}{\sqrt{5-x}}$.

$$
5-x>0
$$

(ii) Find the domain of the function $y=\frac{1}{\sqrt{5-x}}-\frac{1}{\sqrt{x-2}}$.

Also:

$$
\begin{aligned}
x-2 & >0 \\
x & >2
\end{aligned}
$$

$$
\therefore 2<x<5
$$

(Can be written $x>2$ AND $x<5$, but REQUIRES the AND or \cap)

Question 10

(a) (i) Solve $8^{x}=3$, giving your answer correct to three significant figures.

$$
\begin{aligned}
8^{x} & =3 \\
x & =\log _{8} 3 \\
& =\frac{\log _{10} 3}{\log _{10} 8}
\end{aligned}
$$

(ii) Write $2+\frac{1}{2} \log _{3} x$ as a single logarithm.

$$
2+\frac{1}{2} \log _{3} x=\log _{3} 9+\log _{3} x^{\frac{1}{2}}
$$

$$
=\log _{3} 9 \sqrt{x}
$$

(b) Solve the equation $\cos 2 x=-\frac{\sqrt{3}}{2}$ for $0^{\circ} \leq x \leq 360^{\circ}$.

$$
\begin{aligned}
\cos 2 x & =-\frac{\sqrt{3}}{2} \\
2 x & =180-30,180+30,540-30,540+30 \\
& =150,210,510,570
\end{aligned}
$$

(c) In the following diagram, $N C$ is a vertical pole of height h standing on level ground. N lies on $A B$, a horizontal line of length 15 metres.

(i) Show that $A N=h \tan 40^{\circ}$.

$$
\begin{array}{rlrl}
\angle A C N+50+90 & =180 & \text { (angle sum of triangle) } & \frac{A N}{h} \\
\angle A C N & =40 & A N & \tan 0^{\circ} \\
\angle A N & =h \tan 40^{\circ}
\end{array}
$$

(ii) By finding a similar expression for $B N$ or otherwise, find the height of the pole.

$$
\begin{aligned}
& B N=h \tan 20^{\circ} \\
& \qquad A N+B N=15 \\
& h \tan 40^{\circ}+h \tan 20^{\circ}=15 \\
& h\left(\tan 40^{\circ}+\tan 20^{\circ}\right)=\frac{15}{\tan 40^{\circ}+\tan 20^{\circ}}
\end{aligned}
$$

(d) $A B C D$ is a parallelogram. $A X$ bisects $\angle B A D$ and $D X$ bisects $\angle C D A$.

Let $\angle D A X=\alpha$ and $\angle A D X=\beta$.

(i) Prove that $A X \perp D X$.

$$
\begin{aligned}
& \angle B A D+\angle C D A=180^{\circ} \quad \\
& 2 \alpha+2 \beta=180^{\circ} \quad(\text { co-interior angles, } A B \| C D, \text { opposite sides of parallelogram) } \\
& \alpha+\beta=90^{\circ} \\
& \angle A X X=\angle X A D=\alpha, \angle A D X=\angle C D X=\beta) \\
& \angle A X=180-(\alpha+\beta) \quad \text { (angle sum of triangle) } \\
& =90^{\circ}
\end{aligned}
$$

ie. $A X \perp D X$
(ii) Prove also that $B C=2 A B$.

$$
\begin{aligned}
\angle B A X & =\angle D A X \quad & & (A X \text { bisects } \angle B A D) \\
& =\angle X A D & & \text { (alternate angles, } B C \| A D, \text { opposite sides of parallelogram) }
\end{aligned}
$$

Similarly $\angle C D X=\angle C D X$
$\therefore B X=A B$ and $C X=C D \quad$ (equal sides opposite equal angles in isosceles triangles)

$$
\begin{aligned}
B C & =B X+C X \\
& =A B+C D \\
& =2 A B \quad(\text { opposite sides of parallelogram equal })
\end{aligned}
$$

Question 11

(a) Differentiate:
(i) $9 x^{2}+x+2$

$$
\frac{d}{d x}\left(9 x^{2}+x+2\right)
$$

$$
=18 x+1
$$

(ii) $\frac{3}{\sqrt{1-2 x}}$

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{3}{\sqrt{1-2 x}}\right) & =\frac{d}{d x}\left[3(1-2 x)^{-\frac{1}{2}}\right] \\
& =-\frac{3}{2}(1-2 x)^{-\frac{3}{2}}
\end{aligned}
$$

$$
=-\frac{3}{2 \sqrt{(1-2 x)^{3}}}
$$

(iii) $\frac{2 x}{1+x^{2}}$

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{2 x}{1+x^{2}}\right) & =\frac{\left(1+x^{2}\right) \cdot 2-2 x \cdot 2 x}{\left(1+x^{2}\right)^{2}} \\
& =\frac{2+2 x^{2}-4 x^{2}}{\left(1+x^{2}\right)^{2}}
\end{aligned}
$$

$$
=\frac{2\left(1-x^{2}\right)}{\left(1+x^{2}\right)^{2}}
$$

(b) Copy the following curve $y=f(x)$ into your answer booklet.

Below this sketch, draw a sketch of the gradient function $y=f^{\prime}(x)$.
Be sure to line up the features of the two graphs

(c) Find the equation of the normal to the curve $y=\left(\frac{x}{3}-1\right)^{3}$ at the point where $x=9$.
(Normal) $y-8=-\frac{1}{4}(x-9)$

$$
4 y-32=-x+9
$$

(d) (i) If $f(x)=x^{2}-3 x$, write down an expression for $f(x+h)-f(x)$.

$$
f(x+h)-f(x)
$$

$$
=(x+h)^{2}-3(x+h)-\left(x^{2}-3 x\right)
$$

(ii) Hence differentiate $f(x)=x^{2}-3 x$ by first principles.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{2}-3(x+h)-\left(x^{2}-3 x\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{2 \prime}+2 x h+h^{2}-3 x-3 h-\not x^{2}+3 x}{h} \\
& =\lim _{h \rightarrow 0} \frac{\not h(2 x+h-3)}{\not h}
\end{aligned}
$$

$$
=2 x-3
$$

$$
\begin{aligned}
& y=\left(\frac{x}{3}-1\right)^{3} \\
& (x=9) \quad m_{\mathrm{T}}=\left(\frac{9}{3}-1\right)^{2} \\
& y=\left(\frac{9}{3}-1\right)^{3} \\
& \frac{d y}{d x}=3\left(\frac{x}{3}-1\right)^{2} \cdot \frac{1}{3} \\
& =4 \\
& =8 \\
& =\left(\frac{x}{3}-1\right)^{2} \\
& m_{\mathrm{N}}=-\frac{1}{4}
\end{aligned}
$$

Question 12

(a) For what value(s) of x is the tangent to the curve $y=2 x+\frac{1}{x}$ perpendicular to the 3 line $4 x+7 y=0$?

$$
\begin{array}{rlrl}
y=2 x+\frac{1}{x} & \frac{d y}{d x} & =2-x^{-2} & 4 x+7 y \\
=2 x+x^{-1} & =2-\frac{1}{x^{2}} & y & =-\frac{4}{7} x \\
m & =-\frac{4}{7} \\
2-\frac{1}{x^{2}} & =\frac{7}{4} & \\
\frac{1}{x^{2}} & =\frac{1}{4} & \\
x & = \pm 2 &
\end{array}
$$

(b) Find the equation of the line that passes through the point of intersection of the lines $7 x+2 y-3=0$ and $5 x+9 y-1=0$, and also passes through the point $(-3,4)$.

$$
\begin{aligned}
7 x+2 y-3+k(5 x+9 y-1) & =0 \\
(-3,4)-21+8-3+k(-15+36-1) & =0 \\
-16+20 k & =0 \\
k & =\frac{4}{5}
\end{aligned}
$$

$$
\begin{aligned}
7 x+2 y-3+\frac{4}{5}(5 x+9 y-1) & =0 \\
5(7 x+2 y-3)+4(5 x+9 y-1) & =0 \\
35 x+10 y-15+20 x+36 y-4 & =0
\end{aligned}
$$

$$
55 x+46 y-19=0
$$

(c) In the diagram, $\angle B C A=\angle B A H=\alpha, A B=6$ and $B H=4$.

(i) Show that $\triangle A B C||\mid \triangle H B A$.

$$
\begin{aligned}
& \angle A C B=\angle H A B=\alpha \\
& \angle A B C=\angle H B A
\end{aligned}
$$

$$
\therefore \triangle A B C||\mid \triangle H B A
$$

(given)
(common)
(equiangular)
(ii) Hence or otherwise find the length of $H C$.

$$
\begin{aligned}
\frac{B C}{B A} & =\frac{B A}{B H} \quad \text { (corresponding angles of similar triangles) } \\
\frac{B C}{6} & =\frac{6}{4} \\
B C & =9
\end{aligned}
$$

(d) If $f(x)=(x+1)^{2}$, solve the equation $f[f(x)]=100$.

$$
\begin{aligned}
f[f(x)] & =100 \\
{\left[(x+1)^{2}+1\right]^{2} } & =100 \\
(x+1)^{2}+1 & = \pm 10 \\
(x+1)^{2} & =9,-71 \\
x+1 & = \pm 3
\end{aligned}
$$

$$
x=-4,2
$$

Question 13

(a) The function $f(x)$ is defined by $f(x)=x^{2}-k^{2}$ on the domain $-k \leq x \leq 2 k$.

Find the range of $f(x)$ in terms of k over this domain.

$$
f(0)=-k^{2}
$$

$$
f(-k)=0
$$

$$
\begin{array}{r}
f(2 k)=(2 k)^{2}-k^{2} \\
=3 k^{2}
\end{array}
$$

\therefore Range: $-k^{2} \leq f(x) \leq 3 k^{2}$
(b) (i) Prove that $\frac{\cos \theta}{\sin \theta+1}-\frac{\cos \theta}{\sin \theta-1}=2 \sec \theta$.

$$
\begin{aligned}
\text { LHS } & =\frac{\cos \theta}{\sin \theta+1}-\frac{\cos \theta}{\sin \theta-1} \\
& =\frac{\cos \theta(\sin \theta-1)-\cos \theta(\sin \theta+1)}{(\sin \theta+1)(\sin \theta-1)} \\
& =\frac{\sin \theta \cos \theta-\cos \theta-\sin \theta \cos \theta}{\sin ^{2} \theta-1}-\cos \theta \\
& =\frac{-2 \cos \theta}{-\cos ^{2} \theta} \\
& =\frac{2}{\cos \theta} \\
& =2 \sec \theta \\
& =\text { RHS }
\end{aligned}
$$

(ii) Hence or otherwise solve the equation $\frac{\cos \theta}{\sin \theta+1}=4+\frac{\cos \theta}{\sin \theta-1}$ for $0 \leq \theta \leq 360^{\circ}$.

$$
\begin{aligned}
\frac{\cos \theta}{\sin \theta+1} & =4+\frac{\cos \theta}{\sin \theta-1} \\
\frac{\cos \theta}{\sin \theta+1}-\frac{\cos \theta}{\sin \theta-1} & =4 \\
2 \sec \theta & =4 \\
\cos \theta & =\frac{1}{2}
\end{aligned}
$$

(c) A ship sails for 30 nautical miles from O to A on a bearing of $049^{\circ} \mathrm{T}$. It then turns and sails to a point $B, 50$ nautical miles away.
From B, the starting point O is observed on a bearing of $299^{\circ} \mathrm{T}$.

(i) Show that $\angle A O B=70^{\circ}$.

Bearing of O from B is $299^{\circ} \mathrm{T}$
\therefore bearing of B from O is $299-180=119^{\circ} \mathrm{T}$
$\therefore \angle A O B=119-49$

$$
=70^{\circ}
$$

(ii) Show that x satisfies the quadratic equation $x^{2}-\left(60 \cos 70^{\circ}\right) x-1600=0$.

Cosine Rule:

$$
\begin{aligned}
50^{2} & =30^{2}+x^{2}-2(30)(x) \cos 70 \\
2500 & =900+x^{2}-\left(60 \cos 70^{\circ}\right) x \\
x^{2}-\left(60 \cos 70^{\circ}\right) x-1600 & =0
\end{aligned}
$$

(iii) Hence find the distance of B from O, giving your answer in nautical miles correct to one decimal place.

$$
\text { Quadratic formula: } \quad \begin{aligned}
x & =\frac{60 \cos 70^{\circ} \pm \sqrt{\left(60 \cos 70^{\circ}\right)^{2}-4(1)(-1600)}}{2} \\
x & =-31.03,51.56
\end{aligned}
$$

Discarding negative distance:
$B O=51.6 \mathrm{~nm}$
(iv) By how many degrees did the ship turn at A ?

$$
\begin{aligned}
& \frac{\sin \angle O A B}{51.56}=\frac{\sin 70^{\circ}}{50} \\
& \begin{aligned}
\sin \angle O A B & =\frac{51.56 \sin 70^{\circ}}{50} \\
& =0.968929 \\
\angle O A B & =75.68^{\circ}
\end{aligned}
\end{aligned}
$$

\therefore ship turned by 180-75.68

