

2015

Preliminary Mathematics

General Instructions

- Reading Time - 5 minutes
- Working Time - 2 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- In Questions 8-13, show relevant mathematical reasoning and/or calculations

Total Marks - 85

Section I
 Pages 1-3

7 marks

- Attempt Questions 1-7
- Allow about 10 minutes for this section

Section II Pages 4-9

78 marks

- Attempt Questions 8-13
- Allow about 1 hour and 50 minutes for this section

Student Name:

\qquad

Student Number: \qquad

Teacher:

O Mr Trenwith
○ Ms Lee
$\begin{array}{ll}\bigcirc & \text { Ms Everingham } \\ \bigcirc & \text { Ms Narayanan } \\ \bigcirc & \text { Mrs Kennedy } \\ \bigcirc & \text { Mrs Thill }\end{array}$

QUESTION	MARK
$1-7$	$/ 7$
8	$/ 13$
9	$/ 13$
10	$/ 13$
11	$/ 13$
12	$/ 13$
13	$/ 85$

Section I

7 marks

Attempt Questions 1-7
Allow about 10 minutes for this section
Use the multiple-choice answer sheet for Questions 1-7.

1 What is the value of $\sqrt{\frac{5 \pi}{7}}$, correct to 2 significant figures?
(A) 1.5
(B) 1.4
(C) 1.49
(D) 1.50

2 Given that $a>0$, which graph best represents $y=(x-a)^{2}$?
(A)

(B)

(C)

(D)

3 Which of the following is sufficient information to prove that a quadrilateral is a square?
(A) Opposite sides are parallel.
(B) Diagonals are perpendicular and opposite sides are parallel.
(C) Diagonals bisect each other at right angles.
(D) All vertex angles are 90° and diagonals are perpendicular.

4 The graphs of $y=|1-2 x|$ and $y=x+1$ are shown below.

What are the solutions to $x+1-|1-2 x|<0$?
(A) $0<x<2$
(B) $x<0$ or $x>2$
(C) $1<x<3$
(D) $x<1$ or $x>3$

5 Which of the following is the derivative of $\sqrt{7 x}$?
(A) $\frac{1}{2 \sqrt{7 x}}$
(B) $\sqrt{7} x$
(C) $\frac{\sqrt{7 x}}{2}$
(D) $\frac{1}{2} \sqrt{\frac{7}{x}}$

6 The parabola $y=x^{2}$ is shifted left by 2 units, shifted up by 1 unit and then reflected about the y axis. What is the equation of the parabola now?
(A) $(x-2)^{2}=y-1$
(B) $(x+2)^{2}=y+1$
(C) $(x-2)^{2}=y+1$
(D) $(x+2)^{2}=y-1$

7 Which of the following equations best describes the graph below?

(A) $y=\operatorname{cosec} x$
(B) $y=\sec x$
(C) $y=\cot x$
(D) $y=-\sec x$

Section II

78 marks
Attempt Questions 8-13
Allow about 1 hour and 50 minutes for this section
Answer each question in a SEPARATE writing booklet. Extra writing papers are available.
In Questions 8-13, your responses should include relevant mathematical reasoning and/or calculations.

Question 8 (13 marks) Use a SEPARATE writing booklet.
(a) Factorise $8 m^{3}-1$.
(b) Rationalise the denominator of $\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$.
(c) Find the points of intersection of the line $x-y+3=0$ and the hyperbola $x y=10$.
(d) Find the centre and radius of the circle $x^{2}-6 x+y^{2}+4 y+8=0$.
(e) For what values of m does the equation $6 x^{2}-12 m x-7 m+3=0$ have equal roots?

End of Question 8

Question 9 (13 marks) Use a SEPARATE writing booklet.
(a) Differentiate:
(i) $y=2 x^{3}+8 x$
(ii) $y=\frac{x^{2}}{1-x}$
(iii) $y=10 x(3 x-1)^{5}$
(b) It is given that points A, B and C have coordinates $(1,4),(9,-2)$ and $(10,-9)$ respectively.

(i) Find the distance between A and B.
(ii) Find the equation of the line that is parallel to $A B$ and passes through C.
(iii) Hence, show that the perpendicular distance between C and the line $A B$ is 5 units.
(iv) Point D is placed so that $A B \| D C$. Given that quadrilateral $A B C D$ has area of $50 \mathrm{u}^{2}$, show that the length of $C D$ is 10 units.
(v) Find the coordinates of D.

Question 10 (13 marks) Use a SEPARATE writing booklet.
(a) The gradient of the tangent to the curve $y=a x^{3}+b x^{2}$ at $(1,4)$ is 5 .

Find the values of a and b.
(b) Find all solutions of $\sin 2 x=\frac{1}{2}$, where $0^{\circ} \leq x \leq 360^{\circ}$.
(c) Find values of a, b and c, for which $-x^{2}+4 x-3 \equiv a(x+3)^{2}+b(x+3)+c$.
(d) Solve for $x: \quad 2^{x}<5$.
(e) A man walking due north along a level road observes a church spire on a bearing of $342^{\circ} \mathrm{T}$. After walking 1500 metres, he observes it on a bearing of $337^{\circ} \mathrm{T}$.

Copy or trace the diagram into your writing booklet.

Find the perpendicular distance from the church to the road.

End of Question 10

Question 11 (13 marks) Use a SEPARATE writing booklet.
(a) If α and β are the roots of the equation $2 x^{2}-3 x+5=0$, find the value of the following:
(i) $\alpha+\beta$
(ii) $\alpha \beta$
(iii) $(\alpha+2)(\beta+2)$
(b) Prove that $(\sec \theta-\cos \theta)^{2}=\tan ^{2} \theta-\sin ^{2} \theta$.
(c) (i) Derive the equation of the locus of all points $P(x, y)$ which are equidistant from the origin O and the line $y=4$.
(ii) Describe the locus geometrically.
(d) Find the values of k for which the expression $k x^{2}+(k-1) x+k$ is positive definite.

End of Question 11

Question 12 (13 marks) Use a SEPARATE writing booklet.
(a) Evaluate $\lim _{x \rightarrow 5} \frac{6 x^{2}-29 x-5}{x-5}$
(b) Sketch $y=\left|x^{2}-5\right|+1$, showing all important features.
(c) Consider the function $f(x)=x^{2}-5 x+2$.
(i) Differentiate $f(x)$ from first principles.
(ii) Find the equation of the normal to the curve $y=f(x)$ at the point where $x=1$.
(d) A parabola whose axis is parallel to the x-axis has vertex $(2,3)$ and passes through $(-1,9)$. Find the equation of the parabola.
(e) Two cars leave a point P at the same time. They travel away from each other on different straight roads. One car travels at $10 \mathrm{~km} / \mathrm{h}$ more than twice the speed of the other car. The angle between the roads is 120°.

After 3 hours, if the distance between the cars is 500 km , find the speed of the slower car, correct to one decimal place.

End of Question 12

Question 13 (13 marks) Use a SEPARATE writing booklet.
(a) The graph of $y=f(x)$ is shown below. On a half-page diagram, sketch the graph of $y=f^{\prime}(x)$, showing all important features.

(b) The lines $l_{1}: x-2 y-5=0$ and $l_{2}: 3 x-y+2=0$ intersect at P.
(i) Show that the family of lines through P can be written in the form

$$
x(1+3 k)-y(2+k)+(2 k-5)=0
$$

(i) Hence find the equation of the line through P, parallel to the line $4 x-y-1=0$.
(c) Find all solutions of $2 \cos ^{2} x+3 \sin x=3$, where $0^{\circ} \leq x \leq 360^{\circ}$.
(d) $\triangle A B C$ is right-angled at B and $D E$ is perpendicular to $A C$.

(i) Prove that $\triangle A B C$ and $\triangle E D C$ are similar.
(ii) Explain why $B C \times C E=A C \times C D$.
(iii) Prove that $D E^{2}=A D \times D C-B E \times E C$.

1 What is the value of $\sqrt{\frac{5 \pi}{7}}$, correct to 2 significant figures?
(A) 1.5
(B) 1.4
(C) 1.49
(D) 1.50

2 Given that $a>0$, which graph best represents $y=(x-a)^{2}$?
(A)

(B)

(C)

(D)

3 Which of the following is sufficient information to prove that a quadrilateral is a square?
(A) Opposite sides are parallel.
(B) Diagonals are perpendicular and opposite sides are parallel.
(C) Diagonals bisect each other at right angles.
(D) All vertex angles are 90° and diagonals are perpendicular.

4 The graphs of $y=|1-2 x|$ and $y=x+1$ are shown below.

What are the solutions to $x+1-|1-2 x|<0$?
(A) $0<x<2$
(B) $x<0$ or $x>2$
(C) $1<x<3$
(D) $x<1$ or $x>3$

5 Which of the following is the derivative of $\sqrt{7 x}$?
(A) $\frac{1}{2 \sqrt{7 x}}$
(B) $\sqrt{7} x$
(C) $\frac{\sqrt{7 x}}{2}$
(D) $\frac{1}{2} \sqrt{\frac{7}{x}}$

6 The parabola $y=x^{2}$ is shifted left by 2 units, shifted up by 1 unit and then reflected about the y axis. What is the equation of the parabola now?
(A) $(x-2)^{2}=y-1$
(B) $(x+2)^{2}=y+1$
(C) $(x-2)^{2}=y+1$
(D) $(x+2)^{2}=y-1$

7 Which of the following equations best describes the graph below?

(A) $y=\operatorname{cosec} x$
(B) $y=\sec x$
(C) $y=\cot x$
(D) $y=-\sec x$

Question 8 (13 marks) Use a SEPARATE writing booklet.
(a) Factorise $8 m^{3}-1$.
$(2 m-1)\left(4 m^{2}+2 m+1\right)$
(b) Rationalise the denominator of $\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$.
$\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}} \times \frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}-\sqrt{2}}$
$=\frac{(\sqrt{3})^{2}-2 \times \sqrt{3} \times \sqrt{2}+(\sqrt{2})^{2}}{(\sqrt{3})^{2}-(\sqrt{2})^{2}}$
$=5-2 \sqrt{6}$
(c) Find the points of intersection of the line $x-y+3=0$ and the hyperbola $x y=10$.
$x-y+3=0$
$x y=10$
From (1),
$y=x+3$

Substitute (3) into (2)
$x(x+3)=10$
$x^{2}+3 x-10=0$
$(x+5)(x-2)=0$
$\therefore x=-5$ or $x=2$
\therefore points of intersection are $(-5,-2)$ and $(2,5)$
(d) Find the centre and radius of the circle $x^{2}-6 x+y^{2}+4 y+8=0$.
$x^{2}-6 x+y^{2}+4 y+8=0$
$\left(x^{2}-6 x+9\right)+\left(y^{2}+4 y+4\right)=-8+9+4$
$(x-3)^{2}+(y+2)^{2}=5$
\therefore The radius is $\sqrt{5}$ and the centre is $(3,-2)$
(e) For what values of m does the equation $6 x^{2}-12 m x-7 m+3=0$ have equal roots?

$$
\begin{aligned}
& 6 x^{2}-12 m x-7 m+3 \\
& \Delta=(-12 m)^{2}-4(6)(-7 m+3) \\
& \quad=144 m^{2}+168 m-72=0
\end{aligned}
$$

Equal roots occur when $\Delta=0$
$144 m^{2}+168 m-72=0$
$6 m^{2}+7 m-3=0$
$(3 m-1)(2 m+3)=0$
$\therefore m=\frac{1}{3}$ or $m=-\frac{3}{2}$

End of Question 8

Question 9 (13 marks) Use a SEPARATE writing booklet.
(a) Differentiate:
(i) $y=2 x^{3}+8 x$

$$
\begin{aligned}
& y=2 x^{3}+8 x \\
& \frac{d y}{d x}=6 x^{2}+8
\end{aligned}
$$

(ii) $y=\frac{x^{2}}{1-x}$

$$
y=\frac{x^{2}}{1-x}
$$

$$
\frac{d y}{d x}=\frac{(2 x)(1-x)-(-1)\left(x^{2}\right)}{(1-x)^{2}}
$$

$$
=\frac{2 x-2 x^{2}+x^{2}}{(1-x)^{2}}
$$

$$
=\frac{2 x-x^{2}}{(1-x)^{2}}
$$

(iii) $y=10 x(3 x-1)^{5}$

$$
\begin{aligned}
y & =10 x(3 x-1)^{5} \\
\frac{d y}{d x} & =10(3 x-1)^{5}+10 x \times 5 \times(3 x-1)^{4} \times 3 \\
& =10(3 x-1)^{4}((3 x-1)+15 x) \\
& =10(3 x-1)^{4}(18 x-1)
\end{aligned}
$$

(b) It is given that points A, B and C have coordinates $(1,4),(9,-2)$ and $(10,-9)$ respectively.

(i) Find the distance between A and B.

$$
\begin{aligned}
d_{A B} & =\sqrt{(1-9)^{2}+(4-(-2))^{2}} \\
& =\sqrt{64+36} \\
& =10 \text { units }
\end{aligned}
$$

(ii) Find the equation of the line that is parallel to $A B$ and passes through C.

$$
\begin{aligned}
& m_{A B}=\frac{-2-4}{9-1} \\
& \quad=\frac{-6}{8}=-\frac{3}{4} \\
& y-(-9)=-\frac{3}{4}(x-10) \\
& 4 y+36=-3 x+30 \\
& 3 x+4 y+6=0
\end{aligned}
$$

(iii) Hence, show that the perpendicular distance between C and the line $A B$ is 5 units.

$$
\begin{aligned}
\perp d & =\frac{|3(1)+(4)(4)+(6)|}{\sqrt{(3)^{2}+(4)^{2}}} \\
& =\frac{25}{5}=5
\end{aligned}
$$

(iv) Point D is placed so that $A B \| D C$. Given that quadrilateral $A B C D$ has area of $50 \mathrm{u}^{2}$, show that the length of $C D$ is 10 units.
$50=\frac{5}{2} \times(A B+C D)$
$10+C D=20$
$\therefore C D=10$
(v) Find the coordinates of D.
$A B=C D$ and $A B \| C D$
$\therefore A B C D$ is a parallelogram since there is one pair of opposite sides that are equal and parallel

Diagonals $A C$ and $B D$ bisect each other.
$M_{A C}=\left(\frac{1+10}{2}, \frac{4+(-9)}{2}\right)$

$$
=\left(\frac{11}{2},-\frac{5}{2}\right)
$$

$M_{B D}=\left(\frac{11}{2},-\frac{5}{2}\right)$
let D have coordinates (a, b)
$\frac{9+a}{2}=\frac{11}{2}$ and $\frac{-2+b}{2}=-\frac{5}{2}$
$\therefore a=2$ and $b=-3$
$\therefore D$ has coordinates $(2,-3)$

Question 10 (13 marks) Use a SEPARATE writing booklet.
(a) The gradient of the tangent to the curve $y=a x^{3}+b x^{2}$ at (1,4) is 5 .

Find the values of a and b.
$y=a x^{3}+b x^{2}$
$\frac{d y}{d x}=3 a x^{2}+2 b x$
when $x=1, \frac{d y}{d x}=5$
also, when $x=1, y=4$
$5=3 a+2 b$
$4=a+b$
solving simultaneously,
$a=-3$ and $b=7$
(b) Find all solutions of $\sin 2 x=\frac{1}{2}$, where $0^{\circ} \leq x \leq 360^{\circ}$.
$\sin 2 x=\frac{1}{2}$
$2 x=30^{\circ}, 150^{\circ}, 390^{\circ}, 510^{\circ}$
$x=15^{\circ}, 75^{\circ}, 195^{\circ}, 255^{\circ}$
(c) Find values of a, b and c, for which $-x^{2}+4 x-3 \equiv a(x+3)^{2}+b(x+3)+c$.
$a=-1$
$6 a+b=4$
$\therefore b=10$
$9 a+3 b+c=-3$
$\therefore c=-24$

Alternatively,

Equate coefficients, $a=-1$

Substitute $x=-3$,
$-9-12-3=c$
$\therefore c=-24$

Substitute $x=0$,
$-3=-9+3 b-24$
$3 b=30$
$\therefore b=10$
$a=-1, b=10$ and $\mathrm{c}=-24$
$\therefore-x^{2}+4 x-3 \equiv-(x+3)^{2}+10(x+3)-24$
(d) Solve for x : $2^{x}<5$.

$$
\begin{aligned}
& 2^{x}<5 \\
& \log \left(2^{x}\right)<\log 5 \\
& x \times \log 2<\log 5 \\
& x<\frac{\log 5}{\log 2} \\
& x<2.321928095 \ldots \\
& x<2.32 \text { (2 decimal places })
\end{aligned}
$$

(e) A man walking due north along a level road observes a church spire on a bearing of $342^{\circ} \mathrm{T}$. After walking 1500 metres, he observes on a bearing of $337^{\circ} \mathrm{T}$.

Find the perpendicular distance from the church to the road.

End of Question 10

Question 11 (13 marks) Use a SEPARATE writing booklet.
(a) If α and β are the roots of the equation $2 x^{2}-3 x+5=0$, find the value of the following:
(i) $\alpha+\beta$
$\alpha+\beta=\frac{3}{2}$
(ii) $\alpha \beta$

$$
\alpha \beta=\frac{5}{2}
$$

(i) $(\alpha+2)(\beta+2)$

$$
\begin{aligned}
(\alpha+2)(\beta+2) & =\alpha \beta+2(\alpha+\beta)+4 \\
& =\frac{5}{2}+2\left(\frac{3}{2}\right)+4 \\
& =\frac{19}{2}
\end{aligned}
$$

(b) Prove that $(\sec \theta-\cos \theta)^{2}=\tan ^{2} \theta-\sin ^{2} \theta$.

$$
\begin{aligned}
\text { LHS } & =(\sec \theta-\cos \theta)^{2} \\
& =\sec ^{2} \theta-2 \sec \theta \cos \theta+\cos ^{2} \theta \\
& =\left(1+\tan ^{2} \theta\right)-\frac{2 \cos \theta}{\cos \theta}+\left(1-\sin ^{2} \theta\right) \\
& =1+\tan ^{2} \theta-2+1-\sin ^{2} \theta \\
& =\tan ^{2} \theta-\sin ^{2} \theta=\text { RHS }
\end{aligned}
$$

(c) (i) Derive the equation of the locus of all points $P(x, y)$ which are equidistant from the origin O and the line $y=4$.

$$
\begin{aligned}
& P(x, y) \quad l:(x, 4) \quad O(0,0) \\
& d_{P l}=\sqrt{(x-x)^{2}+(y-4)^{2}} \\
& =y-4 \\
& d_{P O}=\sqrt{(x-0)^{2}+(y-0)^{2}} \\
& =\sqrt{x^{2}+y^{2}} \\
& d_{P l}=d_{P O} \\
& y-4=\sqrt{x^{2}+y^{2}} \\
& y^{2}-8 y+16=x^{2}+y^{2} \\
& x^{2}=-8 y+16 \\
& x^{2}=-8(y-2)
\end{aligned}
$$

(ii) Describe the locus geometrically.

Concave down parabola with focal length 2 , and vertex $(0,2)$.
(d) Find the values of k for which the expression $k x^{2}+(k-1) x+k$ is positive definite.

$$
\begin{aligned}
\Delta & =b^{2}-4 a c \\
& =(k-1)^{2}-4(k)(k) \\
& =k^{2}-2 k+1-4 k^{2}=-3 k^{2}-2 k+1
\end{aligned}
$$

$\Delta<0$,
$-3 k^{2}-2 k+1<0$
$(-3 k+1)(k+1)<0$
$k<-1$ or $k>\frac{1}{3}$
$k>0$, since the quadratic is positive definite
$\therefore k>\frac{1}{3}$

End of Question 11

Question 12 (13 marks) Use a SEPARATE writing booklet.
(a) Evaluate $\lim _{x \rightarrow 5} \frac{6 x^{2}-29 x-5}{x-5}$

$$
\begin{aligned}
\lim _{x \rightarrow 5} \frac{6 x^{2}-29 x-5}{x-5} & =\lim _{x \rightarrow 5} \frac{(x-5)(6 x+1)}{x-5} \\
& =\lim _{x \rightarrow 5} 6 x+1 \\
& =31
\end{aligned}
$$

(b) Sketch $y=\left|x^{2}-5\right|+1$, showing all important features.

(c) Consider the function $f(x)=x^{2}-5 x+2$.
(i) Differentiate $f(x)$ from first principles.

$$
\begin{aligned}
& f(x)= \\
& \begin{aligned}
f(x+h) & =(x+h)^{2}-5(x+h)+2 \\
& =x^{2}+2 x h+h^{2}-5 x-5 h+2 \\
f^{\prime}(x)= & \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
= & \lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-5 x-5 h+2-x^{2}+5 x-2}{h} \\
= & \lim _{h \rightarrow 0} \frac{h(2 x-5+h)}{h} \\
= & \lim _{h \rightarrow 0} 2 x-5+h \\
= & 2 x-5
\end{aligned}
\end{aligned}
$$

(ii) Find the equation of the normal to the curve $y=f(x)$ at the point where $x=1$.

At $x=1, m_{T}=2(1)-5=-3$
$\therefore m_{N}=\frac{1}{3}$
At $x=1, y=1^{2}-5(1)+2=-2$
$y-(-2)=\frac{1}{3}(x-1)$
$x-3 y-7=0$
(d) A parabola whose axis is parallel to the x-axis has vertex $(2,3)$ and passes through $(-1,9)$.

Find the equation of the parabola.
$(y-3)^{2}=4 a(x-2)$
let $x=-1$ and $y=9$
$36=-12 a$
$\therefore a=-3$
$\therefore(y-3)^{2}=-12(x-2)$
(e) Two cars leave a point P at the same time. They travel away from each other on 3 different straight roads. One car travels at $10 \mathrm{~km} / \mathrm{h}$ more than twice the speed of the other car. The angle between the roads is 120°.

After 3 hours, if the distance between the cars is 500 km , find the speed of the slower car, correct to one decimal place.

$$
\begin{aligned}
& \cos 120^{\circ}=\frac{(3 x)^{2}+3^{2}(2 x+10)^{2}-500^{2}}{2 \times 3 x \times 3(2 x+10)} \\
& -\frac{1}{2}=\frac{9 x^{2}+9\left(4 x^{2}+40 x+100\right)-250000}{18 x(2 x+10)} \\
& -\frac{1}{2}=\frac{9 x^{2}+36 x^{2}+360 x+900-250000}{18 x(2 x+10)} \\
& -9 x(2 x+10)=45 x^{2}+360 x-249100 \\
& -18 x^{2}-90 x=45 x^{2}+360 x-249100 \\
& 63 x^{2}+450 x-249100=0 \\
& x=\frac{-450 \pm \sqrt{450^{2}-(4)(63)(-249100)}}{2 \times 63}
\end{aligned}
$$

since $x>0$,
$x=59.410 \ldots$

$$
=59.4 \mathrm{~km} \text { (} 1 \text { decimal place })
$$

Question 13 (13 marks) Use a SEPARATE writing booklet.
(a) The graph of $y=f(x)$ is shown below. On a half -page diagram, sketch the graph $y=f^{\prime}(x)$, showing all important features.

(b) The lines $l_{1}: x-2 y-5=0$ and $l_{2}: 3 x-y+2=0$ intersect at P.
(i) Show that the family of lines through P can be written in the form

$$
x(1+3 k)-y(2+k)+(2 k-5)=0
$$

$x-2 y-5+k(3 x-y+2)=0$
$x-2 y-5+3 k x-k y+2 k=0$
$x+3 k x-2 y-k y-5+2 k=0$
$x(1+3 k)-y(2+k)+(2 k-5)=0$ as required
(ii) Hence find the equation of the line l through P, parallel to the line $4 x-y-1=0$.
the line parallel to $4 x-y-1=0$ has gradient 4
the gradient of $x(1+3 k)-y(2+k)+(2 k-5)=0$ is $\frac{1+3 k}{2+k}$
$\frac{1+3 k}{2+k}=4$
$1+3 k=8+4 k$
$k=-7$
$\therefore x(1-21)-y(2-7)+(-14-5)=0$
$-20 x+5 y-19=0$
(c) Find all solutions of $2 \cos ^{2} x+3 \sin x=3$, where $0 \leq x \leq 360^{\circ}$.

$$
\begin{aligned}
& 2\left(1-\sin ^{2} x\right)+3 \sin x=3 \\
& 2-2 \sin ^{2} x+3 \sin x-3=0 \\
& 2 \sin ^{2} x-3 \sin x+1=0 \\
& (2 \sin x-1)(\sin x-1)=0 \\
& \therefore \sin x=\frac{1}{2} \text { or } \sin x=1
\end{aligned}
$$

in the domain $0^{\circ} \leq x \leq 360^{\circ}$

$$
x=30^{\circ}, 150^{\circ} \text { or } 90^{\circ}
$$

(d) $\triangle A B C$ is right-angled at B and $D E$ is perpendicular to $A C$.

(i) Prove that $\triangle A B C$ and $\triangle E D C$ are similar.

In $\triangle E D C$ and $\triangle A B C$,
$\angle B C A$ is common
$\angle A B C=90^{\circ}(\triangle A B C$ is a right-angled triangle $)$
$\angle E D C=90^{\circ}(D E \perp A C)$
$\angle A B C=\angle E D C=90^{\circ}$
$\therefore \triangle E D C||\mid \triangle A B C$ (equiangular)
(ii) Explain why $B C \times C E=A C \times C D$.
$\frac{C E}{A C}=\frac{C D}{B C}$ (corresponding sides of similar triangles)
$\therefore B C \times C E=A C \times C D$
(iii) Prove that $D E^{2}=A D \times D C-B E \times E C$.
$A C=A D+D C$
$B C=B E+E C$
from (i),
$B C \times C E=A C \times C D$
$C E(B E+E C)=C D(A D+D C)$
$C E \times B E+C E^{2}=A D \times C D+D C^{2}$
$E C^{2}-D C^{2}=A D \times D C-B E \times E C$
by Pythagoras theorm,
$D E^{2}=E C^{2}-D C^{2}$
$\therefore D E^{2}=A D \times D C-B E \times E C$ as required

End of Paper

