

ROSEVILLE COLLEGE

2007

PRELIMINARY MATHEMATICS

YEARLY EXAMINATION

Time allowed:

Three hours (plus 5 minutes reading time)

Directions to Candidates:

- Attempt all questions
- All questions are of equal value
- All necessary working must be shown. Marks may not be awarded for answers unsupported by working
- Start each question on a new page
- Your rough work is to be attached to the back of this question paper

1	Basic Arithmetic	· · · · · · · · · · · · · · · · · · ·	<u> </u>
2	Algebra and Surds		
3	Equations		
4	Geometry		
5	Functions and Graphs		
6	Trigonometry		
7	Linear expression and the Straight Line		
8	Introductory Calculus		
9	The Quadratic Function		
10	Locus and the Parabola		
ئــــــا	Total		

Ouestion 1 Basic Arithmetic Show all Working

12 marks

(a) Evaluate
$$|-5|-|-8--5|$$
 (2)

(b) Find, correct to 2 decimal places, the value of:
$$\frac{14 \cdot 73 + 8 \cdot 96}{\sqrt{(5 \cdot 86)^2 - 2 \cdot 78}}$$
 (2)

(c) Express
$$0.23$$
 as a fraction in lowest terms (2)

(e) If
$$a=-3$$
 and $b=-2$, find the exact value of $a^3(a-b)$ (2)

(f) Express
$$3 \cdot 2^{25} \div 0.014$$
 in scientific notation correct to 3 significant figures (2)

Question 2 Algebra and Surds (Start a new page) 12 marks

(a) Simplify:
$$2(a-3) - 2(2a-3)$$
 (2)

(b) Simplify giving your answer in simplest surd form: (2)
$$\sqrt{8} + \sqrt{50} = 3\sqrt{18}$$

(c) Express
$$\frac{2\sqrt{3}}{5-\sqrt{3}}$$
 with a rational denominator (2)

(d) Simplify this algebraic fraction:

$$\frac{a+1}{3} - \frac{3-a}{2} \tag{2}$$

(e) Fully factorise the expression
$$3x^3 - 24$$
 (2)

(f) Heron's formula for the area of a triangle with sides a, b, and c is: (2)

$$A = \sqrt{S(S-a)(S-b)(S-c)}$$
 where $S = \frac{a+b+c}{2}$

Find the area of a triangle with sides 5 cm, 6 cm and 7 cm.

(Give your answer in simplest surd form)

Preliminary Yearly Examination 2007

Question 3 Equations

Start a new page

12 marks

(a) Solve for x:

$$4(x + 5) = -6(3-x)$$

(b) Solve this inequality and graph the solution on a number line:

(3)

(2)

$$|2x-3| \leq 5$$

(c) Solve the following simultaneous equations:

(3)

$$2x + y = 12$$

$$3x + 2y = 22$$

(d) Use the quadratic formula or otherwise to solve $2x^2 - 3x - 1 = 0$, and give your answers correct to 1 decimal place. (2)

(e) Solve the equation

$$4^{3-x} = 8^x$$

(2)

Question 4 Geometry

Start a new page

12 marks

(a) Find the value of n. You do not need to give reasons.

(2)

(b) In the diagram, AX = BX, $\angle PAX = \angle PBX = 90^{\circ}$ Mark this on your diagram.

Using congruent triangles, prove that PX bisects ∠ APB

(3)

Question 4 (continued)

(c)

In the diagram, AC
$$\iint$$
 DF, EF = BF, \angle GEF = 114°, and \angle CBF = x°. (3)

- (i) Copy or trace the diagram, and mark the information on it.
- (ii) Find the value of x. giving complete reasons.
- (d) ABCD is a parallelogram with DC produced to E, where AD = 120 mm, CE = 40 mm and BF = 70 mm. (4)
 - (i) Show that \triangle ABF is similar to \triangle ECF
 - (ii) Find the length of AB

Question 5 Functions and Graphs Start a new page

12 marks

- (a) Draw clear sketches of each of the following showing the intercepts on the axes wherever appropriate. (8)
- (i) $x^2 + y^2 = 9$
- (ii) 2x + 3y = 6
- (iii) $y=2^x+1$
- (iv) y=|x-2|

(b) Find
$$\frac{\lim}{x \to 3} \frac{x^2 - 9}{x - 3}$$
 (2)

- (c) For the function $y=4-x^2$, find: (2)
 - (i) its Domain;
 - (ii) its Range

Start a new page

12 Marks

(a) Find the size of the largest angle in the triangle ABC

(b) Find the exact value of:

(3)

- (i) sin 60°
- (ii) cos 225°
- (iii) $\cot(-30^\circ)$
- (c) On the sketch, two towns A and B are 12km apart on a straight road running northeast from A to B. A surveyor at P, due West of A, observes that the bearing of B is 037°.
- (i) Write down the size of $\angle BAP$ and $\angle APB$

(2)

(ii) Calculate the distance of P from B, correct to 3 significant figures.

(2)

(d) Find all values of θ such that $\sqrt{3} \tan \theta = 1$ and $0^{\circ} \le \theta \le 360^{\circ}$

(2)

Question 7 Linear Expression and the straight Line Start a new page 12 marks

- (a) On a neat sketch, mark the origin O and A(5,0) B(8,4) and C(0,10) (1) Join A to B, B to C and C to A
- (b) Show that the line AB has equation 4x 3y 20 = 0 (2)
- (c) Show that AB is perpendicular to BC (2)
- (d) Show that AO = AB (2)
- (e) Find the area of the quadrilateral ABCO (2)
- (f) If D is the point (8,0), calculate the perpendicular distance of D from AB (2)
- (g) What is the equation of the circle with centre A and which passes through both O and B?

Question 8 Introduction to Calculus Start a new page 12 marks

(a) Differentiate the following:

(i)
$$y = (3x - 2)^5$$

(ii)
$$V = \frac{4}{3}\pi r^3$$

(b) Given that
$$f(t) = \frac{2t-1}{3t+4}$$
, find $f'(-1)$ (2)

- (c) Find the equation of the tangent to the curve $y = x^2 3x$ (3) at the point where x = 2.
- (d) Find the gradient of the normal to the curve to the curve $f(x)=2x^3-4x-5$ at (-1,-3)
- (e) Find the size of the angle that the line 8x 5y = 9 makes with the positive x axis. (2)

Question 9 The Quadratic Function

Start a new page

12 marks

(a) The quadratic equation $2x^2 - 5x + 8 = 0$ has roots α and β

(3)

Evaluate:

- (i) $\alpha + \beta$
- (ii) $\alpha\beta$
- (iii) $\alpha^3 \beta^2 + \alpha^2 \beta^3$
- (b) Without solving, show that the quadratic equation $3x^2 + 2x 5 = 0$ (1) has 2 different rational roots.
- (c) If the minimum value of the expression $x^2 4x + k$ is 5, find the value of k (2)

(d) Find A, B and C if
$$6x^2 - 2x + 9 = Ax(x-1) + B(x-1) + C$$
 (3)

(e) For what values of k does the equation $x + \frac{1}{x} = k$ have real roots? (3)

- (a) What is the equation of the locus of a point P which moves so that

 Its distance from the origin is always less than or equal to 4 units
- (b) By completing the squares, find the centre and radius of the circle whose equation is $x^2 + y^2 2x + 6y 15 = 0$ (3)
- (c) A parabola has its vertex at the point (3,1) and its focus at the point (3,3).
 - (i) What is its focal length?
 - (ii) What is the equation of the directrix?
 - (iii) What is the equation of the parabola?
- (d) A point P (x, y) moves so that the line PA is perpendicular to the line PB, where A = (1,5) and B = (-5,-3). Find the equation of this locus and describe it.

127 (a) 5-3 = 2 6, A. 22. 127 (e) a = 0.23 10c = 2.3 100a = 23.3 90a = 21 $a = \frac{21}{90} = \frac{7}{30}$ [2] (d) 60) of x = 135 20/0/x = 45 2 = \$225 (2) [or unitery method] $(e_1 (-3)^3 (-3--2)$ [2] =-27 × -1 = 27 F, 3.04 2 x 1014 (2) Q2 6, 2a-6-4a+6 =-2a (b) VP = 2/2) 7/2-9/2 $\sqrt{50} = 5\sqrt{2}$ = $-2\sqrt{2}$ $3\sqrt{18} = 3.3\sqrt{2}$ [2] $\frac{2\sqrt{3}(5+\sqrt{3})}{(5-\sqrt{3})(5+\sqrt{3})} = \frac{10\sqrt{3}+6}{25-3}$ $R = \frac{2(5\sqrt{3}+3)}{27}$ $R = \frac{(5\sqrt{3}+3)}{\sqrt{5}}$ (2) $\frac{CH}{3} - \frac{3-a}{2} = \frac{2a+2-9+3a}{6}$ (d) $= \frac{5a-7}{2}$ $3(x^3-8)=3(x-1)(x^2+2x+4)$ [2] (f) 5= 5+6+7 = 9 $A = \sqrt{4(4)(3)(2)} = \sqrt{36 \times 6} = 6\sqrt{6}$ 117 Las 1/211

SOLUTIONS + [MARKS] DECT YR 11 Mades PRELIMINARY. Q3 a, dn+20 = -18+6x 38 = 22 [2] x = 19 (b) /2n-3/€ 5 22-355 or 22-3>-5 $2n \leq 8$ 2n > -226 4 [i] 27, -1 [i] (c) 222 + 12 = 12 = 322 = 22 (F) x2 4 x + 2y = 24 [3] ∴ >C = 2... Sub y = 8 Clich 6 + 16 = 22 4=8 (2) (d) 2n2-3n-1=0 2 = 3 ± \(9 - 4(2\(\) - 1) [3] $= \frac{3 \pm \sqrt{17}}{1} = 108 \text{ or } -0.3$ (e) =(23) × 6-2x 6 :nc = / (2)

14. (a)

n = 34

[2)

& A's APX, BPX,

AX = BX (gwen) PÂY=PBX=90 (gwe)

PX is Common

. It d's are congruet (PHS)[1]

[i]

BÉF = 66° (Suppleady L's)

A BFE is cosciles, to bank's equal

So EFB = 180-2×66 = 48°

[1] Then x = 48" egul alternatil's

(d) In A's ABF and CEF,

BÂF = CÊF (equiations AB) DE)

ARF = FCF ("

AFB = CFE (remanuel en & A)
(angle sun theorem)
(a A's are Similar (A.A.A.) [2]

 $\frac{AB}{40} = \frac{70}{50} = \frac{7}{5}$

: 5AB = 200

AB = 56 cm.

Q5

しまり

(11) 2x+33=6 12 = 0 ,y = 2 y =0, x = 3 [2]

(1V)

[i]

(b) $\lim_{x \to 3} \frac{x^2 - 9}{x - 3} = \frac{0}{0}$

[2]

(c)
$$y = 4 - x^2$$

b: $x \in R$ [1] R: $y \le 4$ [i]

$$\cos A = \frac{3^{2} \cdot 15^{2} - 7^{2}}{2 \cdot 3 \cdot 5} = \frac{9 + 25 - 49}{30}$$

$$= \frac{-15}{30} = -\frac{1}{2}$$

(i)

(b) (1)
$$Sm60 = \frac{\sqrt{3}}{2}$$
 [1]

$$\frac{1}{\sqrt{2}}$$
 | $\frac{1}{\sqrt{2}}$ | $\frac{1}$

$$\frac{PB}{Sn45} = \frac{12}{Sn53}$$

(b) grand
$$AB = \frac{4}{3}$$

$$3y = 4x - 20$$

 $4x - 3y = 20 = 0$

(a)

(3)

.. area of quel. OABC = 50 unts

$$f, d = \frac{8 \times 4 - 3 \times 0 - 20}{\sqrt{4^2 + 3^2}}$$

$$=\frac{32-20}{5}=2^{\frac{2}{5}}$$
 units [3]

$$(x-5)^{2} + (y-0)^{2} = 5^{2}$$

$$(x-5)^{2} + y^{2} = 25$$

$$(x-s)^2 + y^2 = \alpha s$$

 $Q_{8}^{(1)} (y) = (3n-2)^{5}$ $y' = 5(3x-2) \times 3$ $=15(3x-2)^4$ [2] (11) $V = \frac{4}{3}\pi r^3$ $\frac{dV}{dr} = \frac{12}{3}\pi r^2 = 4\pi r^2$ [1] (b) $f(t) = \frac{2t-1}{3t+4}$ $f'(t) = (3t+4)\cdot 2 - 3(2t-1)$ $(3t+4)^{2}$ $= \frac{6+8-6+3}{(3+4)^2}$ $=\frac{11}{(31+4)^2}$ (1) So f(-1) = (3+4)2 = 11 (1) (c) $y = x^2 - 3x$ y' = 2x - 3yn=2, y1=4-3=1 M = 1, (21, 4) = (2, -2)So eques y+2=1(x-2) y+2=x-2y = x - 4 $f(n) = 2n^3 - 4n - 5$ $f(x) = 6x^2 - 4$ $f(-1) = 6(-1)^2 - 4 = 2[1]$ · Normal has graduent - [1] $8x - 5y = 9 \Rightarrow y = 2x - 9$ tano = 5, 1.0 = 58°

 $-2n^2-5n+8=c$ $(a_1(1))$ $4+\beta = \frac{1}{2} = \frac{5}{2}$ (a_1) $4\beta = \frac{5}{2} = \frac{3}{2} = 4$ [1] [i](in) \$2 p2 (x+B) = 42 x 5/2 (i) (b) 3x2+2x-5=0 $\Delta = 4 - 4(3)(5) = 4 + 60 = 64$ Since 64 is a perfect squeer, Touts an PATIONAL and DIFFERENTI [] (c) 2-4x+K Mu. value is when $x = \frac{b}{2a} = \frac{4}{2}$ $if x=2, 2^{2}-4\times 2+k=5$ 4-8+K=5 $..K = 9 \qquad (2)$ (d) An(x-1) + B(x-1) + C = 6x2-bx+ Equating coefficients: A = 6. (1) $\forall x = 1$, C = 6 - 2 + 9 = 13 $4 \times = 2$, y = 4 - 6 = -2 (2,-2) = 2 = 2, 12(1) + B(1) + 13 = 24 - 4 + 9B+25 = 29 B = 4 [i] u A = 6, B = 4, C = 13 (e) 2+ x= K → x+1 = Kx $x^2-Kx+1=0 \qquad (1)$ For real roots, A>C $\mathcal{K}-4(1) > 0$ $K^2 - 4 > 0$ (1) (K-2)(K+1)>0 K = -2 and K = 2 [1]

(b)
$$\chi^2 + y^2 - 2x + 6y - 15 = 0$$

 $\chi^2 - 2x + 1 + y^2 + 6y + 9 = 15 + 1 + 9$
 $(2x - 1)^2 + (y + 3)^2 = 25$
Certain is $(1, -3)$ tadas = 5.

(111) Parabole is
$$(x-3)^2 = 4 \times 2(y-1)$$

PAI PB

gratuat of PA =
$$\frac{y-5}{x-1}$$

gratuat of PB = $\frac{y+3}{x+5}$

So $\frac{y-5}{x-1} \times \frac{y+3}{x+5} = -1$
 $y^2-y-15 = -x^2-4x+5$
 $x^2+y^2+4x-2y-20=0$
 $x^2+4x+4+4-2y+1=20+4+1$
 $(x+2)^2+(y-1)^2=25$

Cercle, certae $(-2,1)$ radius 5.