Section I (10 marks)

Use the multiple-choice answer sheet for Questions 1-10

1. Which of the following is equivalent to $\sqrt{243}+2 \sqrt{75}$?
(A) $19 \sqrt{3}$
(B) $81 \sqrt{3}$
(C) $106 \sqrt{3}$
(D) $2 \sqrt{318}$
2. The domain of the function $f(x)=\frac{1}{(x-3)(1-x)}$ is all real x but:
(A) $\quad x \neq-1$ or $x \neq-3$
(B) $\quad x \neq-1$ or $x \neq 3$
(C) $x \neq 1$ or $x \neq-3$
(D) $\quad x \neq 1$ or $x \neq 3$
3. What is the value of $\frac{d y}{d x}$ if $y=x^{4}+5 x^{-1}$?
(A) $\frac{d y}{d x}=4 x^{3}-5 x^{0}$
(B) $\frac{d y}{d x}=4 x^{3}+5 x^{0}$
(C) $\frac{d y}{d x}=4 x^{3}-5 x^{-2}$
(D) $\frac{d y}{d x}=4 x^{3}+5 x^{-2}$
4. Solve $|2-3 x| \geq 5$
(A) $x \leq-1$ or $x \geq 2 \frac{1}{3}$
(B) $x \geq-1$ or $x \leq 2 \frac{1}{3}$
(C) $x \leq-2 \frac{1}{3}$ or $x \geq 1$
(D) $\quad x \geq-2 \frac{1}{3}$ or $x \leq 1$
5. Which type of function is $f(x)=2 x^{3}-x$?
(A) Odd
(B) Even
(C) Neither odd or even
(D) Zero
6. What is solution to the equation $2 \sin \beta=-\sqrt{3}$ for $0^{\circ} \leq \beta \leq 360^{\circ}$?
(A) $\beta=60^{\circ}, 300^{\circ}$
(B) $\beta=120^{\circ}, 240^{\circ}$
(C) $\beta=210^{\circ}, 330^{\circ}$
(D) $\beta=240^{\circ}, 300^{\circ}$
7. What is the solution to the equation $x^{2}+2 x-7=0$?
(A) $x=-1 \pm \sqrt{2}$
(B) $x=-2 \pm \sqrt{2}$
(C) $x=-2 \pm 2 \sqrt{2}$
(D) $\quad x=-1 \pm 2 \sqrt{2}$
8. Which of the following is true for the equation $x^{2}+8 x+16=0$?
(A) No real roots
(B) Equal roots
(C) Two real distinct roots
(D) Three real roots
(a) Draw neat sketches of the following equations on a separate set of axes. Use a ruler to draw axes and mark scales Show clearly the essential features of each graph.
i) $y=4-x^{2}$ 2
ii) $y=\sqrt{4-x^{2}}$

2
iii) $y=\frac{4}{x}$

2
(d) Find $\lim _{x \rightarrow 4} \frac{x^{2}-x-12}{x-4}$

2
(e) Rationalise the denominator of $\frac{1}{\sqrt{5}-1}$

Section II

Answer each question in a new answer booklet.

Question 11 (15 marks)
(a) Express $0.1 \dot{5}$ as a fraction in its simplest form.
(b) Solve $\frac{1}{2}(y-3)-\frac{1}{3}(y-2)=3$
(c) Simplify $\frac{a^{2}+b^{2}+2 a b}{-b^{2}+a^{2}}$

2
(d) Find the exact value of:
(i) $\tan 240^{\circ}$

1
(ii) $\sec 510^{\circ}$

Question 13 (15 marks) Start a new answer booklet
(b) Prove $\tan \theta-\tan \theta \sin ^{2} \theta=\sin \theta \cos \theta$
(c) Solve the following pair of simultaneous equations.

2

$$
\begin{aligned}
& 2 x+y-1=0 \\
& 3 x-y-4=0
\end{aligned}
$$

(d) Differentiate with respect to x.
i) $\frac{1}{x^{3}}$
ii) \sqrt{x}
2
(e) Find the equation of the tangent to $y=x^{3}-4 x$ at the point $(1,-3)$. 2
(f) For what values of k does $x^{2}-k x+4=0$ have no real roots. 2

Question 14 (15 marks) Start a new answer booklet
(a) Point C is due east of A. Point B is 40 km from A and 25 km from C.
The bearing of B from C is 325°.

i) Show that $\angle A C B=55^{\circ}$
ii) What is the bearing of B from A ?
(c) Find the quadratic equation with roots $(1+\sqrt{3})$ and $(1-\sqrt{3})$.
(d) The curve $y^{2}=x+9$ and the straight line $x-3 y+9=0$ intersect at A and B.
i) Find the coordinates of points A and B.
ii) Sketch $y^{2}=x+9$ and $x-3 y+9=0$ on the same number plane.

2018 Adjusted Prelim

$$
\text { 1. } \begin{align*}
& \sqrt{243}+2 \sqrt{75} \\
= & \sqrt{3^{5}}+2 \sqrt{5^{2} \times 3} \\
= & \sqrt{3^{4} \cdot 3}+2 \sqrt{5^{2} \times 3} \\
= & 9 \sqrt{3}+10 \sqrt{3} \\
= & 19 \sqrt{3} \tag{A}
\end{align*}
$$

Simplest method: evaluate each on your calculator!
$2 f(x)=\frac{1}{(x-3)(1-x)}$
so $(x-3)(1-x) \neq 0$
re $x \neq 3, x \neq 1$
(D)

Cannot divide by zero
3.

$$
\begin{align*}
y & =x^{4}+5 x^{-1} \\
\frac{d y}{d x} & =4 x^{3}+5 \cdot(-1) x^{-2} \\
& =4 x^{3}-5 x^{-2} \tag{c}
\end{align*}
$$

4. $|2-3 x| \geqslant 5$

$$
\begin{array}{rlrl}
2-3 x & \geqslant 5 & -(2-3 x) & \geqslant 5 \\
-3 x & \geqslant 3 & -2+3 x & \geqslant 5 \\
x \leqslant-1 & 3 x & \geqslant 7 \\
x & \geqslant \frac{7}{3} \tag{A}
\end{array}
$$

te $x \leqslant-1$ or $x \geqslant \frac{7}{3}$
Two steps the positive and the negative.
Check by sketching

$$
y=|2-3 x|
$$

5. $f(x)=2 x^{3}-x$

If even $f(-x)=f(x)$

$$
f(-x)=2(-x)^{3}-(-x)
$$

$$
=-2 x^{3}+x
$$

$$
=-\left(2 x^{3}-x\right)
$$

$$
=-f(x)
$$

\therefore not even
Odd if $f(-x)=-f(x)$
\therefore is odd

Substitute " $-x$ " for x and test.
b. $2 \sin \beta=-\sqrt{3} \quad 0^{\circ} \leq \beta \leq 360^{\circ}$

$$
\sin \beta=\frac{-\sqrt{3}}{2}
$$

Related angle $\sin \beta=\frac{\sqrt{3}}{2} \quad \beta=60^{\circ}$

$$
\begin{align*}
\therefore \beta & =180+60,360-60 \\
& =240^{\circ}, 300^{\circ} \tag{D}
\end{align*}
$$

Determine related angle (firs) quadrant θ, ratio is positive and check levaluate for the correct quadrant

$$
\begin{aligned}
& \text { 7. } x^{2}+2 x-7=0 \\
& x=\frac{-2 \pm \sqrt{2^{2}-4 \cdot 1 \cdot(-7)}}{2}
\end{aligned}
$$

$$
=\frac{-2 \pm \sqrt{32}}{2} \quad \sqrt{32}=\sqrt{16 \times 2}
$$

$$
\begin{equation*}
=-1 \pm 2 \sqrt{2} \tag{D}
\end{equation*}
$$

Quadratic formula or complete the square
9.

$$
\begin{aligned}
& x^{2}+8 x+16=0 \\
& \Delta=b^{2}-4 a c \\
& =64-4 \times 16 \\
& \\
& =0
\end{aligned}
$$

\therefore the quadratic has equal roots
ii) $y=\sqrt{4-x^{2}}$
[Aside: square both sides

$$
y^{2}=4-x^{2}
$$

ie $x^{2}+y^{2}=4$ circle $]$
Semicircle $y \geq 0,-2 \leq x \leq 2$

iii) $y=\frac{4}{x} \quad$ hyperbola asymptotes of

QUESTION 12
a) Sorry -no ruler here!
i) $y=4-x^{2}$

$$
=(2-x)(2+x)
$$

Concave down parabola

d)

$$
\begin{aligned}
& \lim _{x \rightarrow 4} \frac{x^{2}-x-12}{x-4} \\
= & \lim _{x \rightarrow 4} \frac{(x-4)(x+3)}{x-4} \\
= & \lim _{x \rightarrow 4} x+3 \\
= & 4+3 \\
= & 7
\end{aligned}
$$

Do not get rid of the Sim notation until there is no longer a variable

QUESTION II
a)

$$
\text { let } \begin{aligned}
x & =0.15 \\
& =0.155555 \mathrm{~m} \\
100 x & \simeq 15.555555 \mathrm{~m} \\
99 x & =15.4 \\
x & =\frac{15.4}{99} \\
& =\frac{154}{990}
\end{aligned}
$$

Multiply by sufficient power of 10 to eliminate the tail by subtraction. Do not leave a decimal in the answer
b) $\frac{6 x}{2}(y-3)-\frac{1}{3}(y-2)=3^{x 6}$
$x 6: \quad 3(y-3)-2(y-2)=18$

$$
\begin{array}{r}
3 y-9-2 y+4=18 \\
y-5=18 \\
y=23
\end{array}
$$

Cheek by substituting answer back in-use your calculator.
c)

$$
\begin{aligned}
& \frac{a^{2}+b^{2}+2 a b}{-b^{2}+a^{2}} \\
& =\frac{(a+b)^{2}}{(a-b)(a+b)} \\
& =\frac{a+b}{a-b}
\end{aligned}
$$

d)

$$
\text { i) } \begin{aligned}
& \tan 240 \\
= & \tan (180+60) \\
= & \tan 60 \\
= & \sqrt{3}
\end{aligned}
$$

Check with calculator!
ii) $\sec 510$

$$
=\frac{1}{\cos (360+150)}
$$

$$
\begin{aligned}
& =\frac{1}{\cos (180-30)} \\
& =\frac{1}{-\cos 30} \\
& =\frac{1}{-\sqrt{3} / 2} \\
& =\frac{-2}{\sqrt{3}}
\end{aligned}
$$

QUESTION 14
b)

$$
\begin{array}{r}
\text { RTP } \tan \theta-\tan \theta \sin ^{2} \theta \\
=\sin \theta \cos \theta
\end{array}
$$

$$
\begin{aligned}
L H S & =\tan \theta-\tan \theta \sin ^{2} \theta \\
& =\tan \theta\left(1-\sin ^{2} \theta\right)
\end{aligned}
$$

but $\cos ^{2} \theta+\sin ^{2} \theta=1$ pythagoras

$$
=\frac{\sin \theta}{\cos \theta} \cdot \cos ^{2} \theta
$$

$$
=\sin \theta \cdot \cos \theta
$$

$=$ RHS as required

QUESTION 14
a)

c) $\alpha=1+\sqrt{3} \quad \beta=1-\sqrt{3}$

$$
(x-\alpha)(x-\beta)=x^{2}-(\alpha+\beta) x+\alpha \beta
$$

At c :

$$
\begin{aligned}
a^{\circ} & =325^{\circ}-270^{\circ} w \stackrel{90}{0}_{\frac{N}{2}}^{270^{\circ}} \\
& =55^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
\alpha+\beta & =1+\sqrt{3}+1-\sqrt{3} \\
& =2 \\
\alpha \beta & =(1+\sqrt{3})(1-\sqrt{3}) \\
& =1-\sqrt{3}+\sqrt{3}-3 \\
& =-2
\end{aligned}
$$

ii) bearing B from A

\therefore The monic quadratic 15

$$
x^{2}-2 x-2=0
$$

d)

$$
\begin{align*}
& y^{2}=x+9 \tag{1}\\
& x-3 y+9=0 \tag{2}
\end{align*}
$$

(1) $\Rightarrow \quad x=y^{2}-9$
sub into (2)

$$
=0.511970027^{\circ}(\text { cal })
$$

$$
\alpha=30^{\circ} 47^{\prime} 42.51
$$

$$
\begin{aligned}
\therefore \beta & =90-\alpha \\
& =59^{\circ} 12^{\prime} 17 \cdot 49^{\prime \prime}
\end{aligned}
$$

it the bearing of B from A is $059^{\circ} \mathrm{T}$.

$$
\begin{aligned}
& y^{2}-9-3 y+9=0 \\
& y^{2}-3 y-18=0 \\
& (y-6)(y+3)=0 \\
& \therefore y=-3,6 \\
& \text { sub into (2) }
\end{aligned}
$$

When $y=-3$

$$
x+9+9=0
$$

$$
x-18+9=0
$$

$$
x=-18
$$

$$
x=9
$$

(curves intersect at $(-9,0)$ and $(0,3)$
c)

$$
\begin{align*}
& 2 x+y-1=0 \tag{1}\\
& 3 x-y-4=0 \tag{2}
\end{align*}
$$

Show what you are
(2)

$$
\begin{array}{r}
5 x-5=0 \\
5 x=5 \\
x=1
\end{array}
$$

sub into (1) \leftarrow

$$
\begin{array}{r}
2+y-1=0 \\
\therefore y=-1 \\
\therefore x=1, y=-1
\end{array}
$$

Check by substitution.
d)

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{1}{x^{3}}\right) & =\frac{d}{d x}\left(x^{-3}\right) \\
& =-3 x^{-4} \\
& =-\frac{3}{x^{4}}
\end{aligned}
$$

e) $y=x^{3}-4 x$

$$
\frac{d y}{d x}=3 x^{2}-4
$$

At $(1,-3)$ the gradient of the tangent is

$$
\begin{aligned}
m= & 3(1)^{2}-4 \\
= & -1
\end{aligned}
$$

Equation of the tangent

$$
\begin{gathered}
y-(-3)=-1(x-1) \\
y+3=-x+1 \\
x+y+2=0
\end{gathered}
$$

Remember point-gradient form of a line.
Answer here is in general
form.
f) $x^{2}-k x+4=0$

No real roots $\Rightarrow \Delta<0$

$$
\therefore(-k)^{2}-4 \times 1 \times 4<0
$$

$$
\begin{gathered}
k^{2}-16<0 \\
(k+4)(k-4)<0 \\
\therefore-4<k<4
\end{gathered}
$$

