
(INSPIRE ACHIEVE SUCCEED

Full Name: \qquad
Teacher: \qquad

2017

YEAR 11

PRELIMINARY

 EXAMINATION
Mathematics

General Instructions

- Reading time - 5 minutes
- Working time -2 hours
- Write using black pen
- Board-approved calculators may be used
- A reference sheet is provided

Total marks - 70

Section I

10 marlss

Use the multiple choice answer sheet

Section II

60 marks
Start a new answer booklet for each of these questions. No answers to be written on question booklet.

Section I(10 marls)

Use the multiple-choice answer sheet for Questions 1-10

1. Simplify $\frac{x^{3}+x}{x}$
(A) $x^{2}+1$
(B) $x^{2}+x$
(C) $x^{3}+1$
(D) x^{3}
2. $3^{500} \times 3^{20}=$
(A) 9520
(B) 910000
(C) 310000
(D) 3520
3. Which of these is a function?
(A) $y^{2}=x$
(B) $y=1$
(C) $x^{2}+y^{2}=4$
(D) $x=2$
4. Which graph best represents $y=|x|-2$?

(A)

(B)

(C)

(D)

5. If $y=2(3 x-1)^{-4}$, which of the following is the correct expression for $\frac{d y}{d x}$?
(A) $\frac{-24}{(3 x-1)^{5}}$
(B) $\frac{1}{24(3 x-1)^{5}}$
(C) $\frac{1}{8(3 x-1)^{5}}$
(D) $\frac{8}{(3 x-1)^{5}}$
6. Evaluate $\sqrt[4]{\frac{43.52 \times 6.23}{4.3^{2}}}$, correct to two significant figures.
(A) 1.9
(B) 1.95
(C) 2.0
(D) 3.8
7. The quadratic equation $x^{2}-3 x-9=0$ has roots α and β.

What is the value of $\frac{1}{\alpha}+\frac{1}{\beta}$?
(A) 3
(B) $-\frac{1}{3}$
(C) $\frac{1}{3}$
(D) -3
8. For what values of r does the equation $r x^{2}+r x+1$ have two unequal real roots?
(A) $r<0$
(B) $r>4$
(C) $r<0, r>4$
(D) $0<r<4$
9. For what values of p is the line $p x+2 y=0$ parallel to the line $8 x+p y=0$?
(A) $p=4$
(B) $p=-4$
(C) $p= \pm 4$
(D) $p= \pm 16$
10. Simplify $\operatorname{cosec}^{2} x \sec ^{2} x-\operatorname{cosec}^{2} x$
A) $\operatorname{cosec}^{2} x$
B) $\sin ^{2} x$
C) $\tan ^{2} x$
D) $\sec ^{2} x$

Section II

a) Solve the equation $2 \cos x=\sqrt{2}$ for $0^{\circ} \leq \mathrm{x} \leq 360^{\circ}$
b) Consider the function $\mathrm{y}=\sqrt{9-\mathrm{x}^{2}}$.
i) Sketch the graph of the function.
ii) State the range of the function.
c) Solve the inequality $|5 x-2| \geq 4$.

2
d) Differentiate with respect to x

$$
\begin{equation*}
\text { i) } \quad y=\frac{x}{2 x^{2}+1} \text {. } \tag{2}
\end{equation*}
$$

ii) $\quad y=x(2 x+1)^{2}$
e) Find the point of intersection of the lines $4 x-3 y-3=0$ and $x-3 y+15=0$

f) F
 1

a) Solve the equation $x(x-5)=-6$.
b) Find the radius of the circle with equation $x^{2}+y^{2}-4 y-12=0$.
c) Find the gradient of the tangent to curve $y=\sqrt{x^{2}+4}$ at the 2 point (0,2).
d)
\qquad

e) Consider the function $f(x)=p x^{2}-2 x$.

Given that $f(1)=f(-2)$, find the value of p.
f)
a) Find a quadratic equation with roots $\sqrt{2}$ and $-\sqrt{2}$.
b)
c) \quad Solve $2 \log _{7} 4=\log _{7} 2 x-\log _{7} 3$.
d) The tangent to the parabola $y=\frac{1}{4} x^{2}-4 x$ at a point P has a gradient of -6 .
Find the coordinates of the point P.
e) Find the equation of the normal to the curve $y=\frac{3}{1+2 \sqrt{x}}$ at the point where $x=1$.
f) Show that $\frac{\operatorname{cosec}^{2} x-1}{\cos ^{2} x}=\operatorname{cosec}^{2} x$
a) Find the values of the constant m such that $y=m x$ is tangent to the parabola with equation $\mathrm{y}=4 \mathrm{x}^{2}+1$.
\uparrow
b)
c) Sketch the curve $y=2 \cos 2 x$ for $0 \leq x \leq 360^{\circ}$.
d) Show that the quadratic equation $x^{2}-m x-1=0$ has two real unequal roots for all values of m .
e)

2017 Practice Advanced

1. $\frac{x^{3}+x}{x}=\frac{x\left(x^{2}+1\right)}{x}$

$$
=x^{2}+1 \quad(x \neq 0) \quad(A)
$$

$$
\begin{align*}
& 6 \sqrt{\frac{43.52 \times 6.23}{4.3^{2}}} \\
& \quad=3.829305461 \text { (calc) } \\
& =3.8 \text { to 2 sig. figs (D) } \tag{D}
\end{align*}
$$

2. $3^{500} \times 3^{20}=3^{520}$

Multiply \Rightarrow add the indices
7

$$
\begin{array}{r}
x^{2}-3 x-9=0 \\
\frac{1}{\alpha}+\frac{1}{\beta}=\frac{\alpha+\beta}{\alpha \beta} \\
=\frac{(-3)}{(-9)} \\
=1 / 3 \tag{c}
\end{array}
$$

(c) $x^{2}+y^{2}=4$
(vo)
8. $\quad r x^{2}+r x+1$

2 unequal real roots $\Rightarrow \Delta>0$
(b) $x=2$

(10)

Must be $1 y$ for each x (B)
4. $y=|x| \xrightarrow{4} x$
$y=|x|-2 \Rightarrow$ shift down
(B)

$$
\begin{array}{rr}
8 \quad & 8 x+2 y=0 \\
2 y=-p x & p y=-8 x \\
y=\frac{-p}{2} x & y=\frac{-8}{p}
\end{array}
$$

by 2

$$
\begin{aligned}
& r^{2}-4 r>0 \\
& r(r-4)>0
\end{aligned}
$$

$$
\begin{equation*}
\therefore r<0 \text { or } r>4 \tag{c}
\end{equation*}
$$

5.

$$
\begin{align*}
y & =2(3 x-1)^{-4} \\
\frac{d y}{d x} & =2 \times(-4) \times(3) \times(3 x-1)^{-5} \\
& =-44(3 x-1)^{-5} \\
& =\frac{-45}{(3 x-1)^{5}} \tag{A}
\end{align*}
$$

$$
\text { 10, } \begin{aligned}
& \operatorname{cosec}^{2} x \sec ^{2} x-\operatorname{cosec}^{2} x \\
= & \operatorname{cosec}^{2} x\left(\sec ^{2} x-1\right)
\end{aligned}
$$

Now $\cos ^{2} \theta+\sin ^{2} \theta=1$

$$
\begin{aligned}
&\left(1 \operatorname{sog}^{2} \theta\right) \cot ^{2} \theta+1=\operatorname{cosec}^{2} \theta \\
&\left(4 \cos ^{2} \theta\right) 1+\tan ^{2} \theta=\sec ^{2} \theta \\
& \therefore \operatorname{Ir}=\operatorname{cosec}^{2} x \cdot \tan ^{2} x \\
&=\frac{1}{\sin ^{2} x}=\frac{\sin ^{2} x}{\cos ^{2} x} \\
&=\frac{1}{\cos ^{2} x} \\
&=4 H 5
\end{aligned}
$$

Question II
a)

$$
\begin{aligned}
2 \cos x & =\sqrt{2} \quad 0 \leqslant x \leqslant 360^{\circ} \\
\cos x & =\frac{\sqrt{2}}{2} \quad \mathrm{~S}, \mathrm{~V}^{A} \\
x & =45^{\circ}, 360-45^{\circ} \\
& =45^{\circ}, 315^{\circ}
\end{aligned}
$$

$$
\text { c) } \begin{array}{rlr}
|5 x-2| & \geqslant 4 & \\
5 x-2 & \geqslant 4 & -(5 x-2)
\end{array} \geqslant 4
$$

Always 2 processes, $+2 H S,-$ LH and check your answers! (by substituting a value)
d) i) $\begin{array}{ll}y=\frac{x}{2 x^{2}+1} & u=x \quad y^{\prime}=1 \\ v=2 x^{2}+1^{2} \quad v^{\prime}=4 x\end{array}$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\left(2 x^{2}+1\right) \cdot 1-x \cdot 4 x}{\left(2 x^{2}+1\right)^{2}} \\
& =\frac{2 x^{2}+1-4 x^{2}}{\left(2 x^{2}+1\right)^{2}} \\
& =\frac{-2 x^{2}+1}{\left(2 x^{2}+1\right)^{2}}
\end{aligned}
$$

Never expand the denominator
b) $y=\sqrt{9-x^{2}}$
i) semicircle centre $(0,0)$

ii) Range: $[-3,3]$
ii) $y=x(2 x+1)^{2}$

$$
\begin{aligned}
& a=x \quad u^{\prime}=1 \\
& v=(2 x+1)^{2}
\end{aligned}
$$

$$
v^{\prime}=4(2 x+1)
$$

$$
\frac{d y}{d x}=(2 x+1)^{2} \times 1+x \times 4(2 x+1)
$$

$$
=(2 x+1)[2 x+1+4 x]
$$

$$
=(2 x+1)(6 x+1)
$$

Check reference sheet.
Note: retained factored form to make simplifying easy
e) $4 x-3 y-3=0$

$$
x-3 y+15=0
$$

For point of intersection, solve simultaneously
(1) - (b)

$$
\begin{array}{r}
3 x-18=0 \\
3 x=18 \\
x=6
\end{array}
$$

sub into (1)

$$
\begin{array}{r}
24-3 y+3=0 \\
3 y=27 \\
y=9
\end{array}
$$

$$
\therefore x=6, y=9 \text { ie }(6,9)
$$

Answer the question. Point of intersection means courclinate

QUESTION 12
a)

$$
\begin{gathered}
x(x-5)=-6 \\
x^{2}-5 x+6=0 \\
(x-3)(x-2)=0 \\
\therefore x=3,2
\end{gathered}
$$

b) $x^{2}+y^{2}-4 y-12=0$

Complete the square on y

$$
\begin{aligned}
& x^{2}+\left[(y-2)^{2}-4\right]-12=0 \\
& x^{2}+(y-2)^{2}-16=0 \\
& x^{2}+(y-2)^{2}=16
\end{aligned}
$$

\therefore radius $154(\sqrt{16})$ $\{$ centre is $(0,2)\}$
c)

$$
\begin{aligned}
y & =\sqrt{x^{2}+4} \\
& =\left(x^{2}+4\right)^{1 / 2} \\
\frac{d y}{d x} & =\frac{1}{2} \times 2 x\left(x^{2}+4\right)^{-1 / 2} \\
& =\frac{x}{\sqrt{x^{2}+4}}
\end{aligned}
$$

At $(0,2)$ gradient of tangent

$$
m=\frac{d y}{d x}=\frac{0}{\sqrt{0+4}}
$$

$$
=0
$$

For the gradient, always substitute the x-value into $\frac{d y}{d x}$
e) $f(x)=p x^{2}-2 x$

Given $f(1)=f(-2)$

$$
\begin{aligned}
& f(1)=p-2 \\
& f(-2)=4 p+4
\end{aligned}
$$

$\therefore \quad 4 p+4=p-2$

$$
3 p=-6
$$

$$
p=-2
$$

QUESTION 3

$$
\text { a) } \begin{aligned}
\alpha & =\sqrt{2} \quad \beta=-\sqrt{2} \\
q(x) & =(x-\alpha)(x-\beta) \\
& =x^{2}-(\alpha+\beta) x+\alpha \beta \\
& =x^{2}-(\sqrt{2}-\sqrt{2}) x+\sqrt{2} \cdot(-\sqrt{2}) \\
& =x^{2}-2
\end{aligned}
$$

This is monic. Could be $a\left(x^{2}-2\right)$ for $a \neq 0$
c)

$$
\begin{aligned}
2 \log _{7} 4 & =\log _{7} 2 x-\log _{7} 3 \\
\log _{7} 4^{2} & =\log _{7} \frac{2 x}{3} \\
4^{2} & =\frac{2 x}{3} \\
x & =\frac{4^{2} \times 3}{2} \\
& =24
\end{aligned}
$$

Log laws: $\log _{a} x^{n}=n \log _{a} x$

$$
\log _{a} x-\log _{a} y=\log _{a} \frac{x}{y}
$$

d) $y=\frac{1}{4} x^{2}-4 x$

Gradient function:

$$
\begin{aligned}
\frac{d y}{d x} & =2 \times \frac{1}{4} \times x-4 \\
& =\frac{1}{2} x-4
\end{aligned}
$$

If $m=-6$

$$
\begin{aligned}
\frac{1}{2} x-4 & =-6 \\
\frac{1}{2} x & =-2 \\
x & =-4
\end{aligned}
$$

At $x=-4$

$$
\begin{aligned}
y & =\frac{1}{4}(-4)^{2}-4(-4) \\
& =4+16 \\
& =20 \\
\therefore P & =(-4,20)
\end{aligned}
$$

e) $y=\frac{3}{1+2 \sqrt{x}}$

$$
\begin{aligned}
& =3\left(1+2 x^{1 / 2}\right)^{-1} \\
\frac{d y}{d x} & \left.=3 \times(-1) \times \frac{\left(2 x^{-1 / 2}\right.}{2}\right)\left(1+2 x^{2}\right)^{-2}
\end{aligned}
$$

$$
=\frac{-43}{\sqrt{x}(1+2 \sqrt{x})^{2}}
$$

At $x=1$

$$
\frac{d y}{d x}=\frac{-133}{1 \times 3^{2}}
$$

$$
=\frac{-6}{4}-\frac{3}{9}
$$

$$
\frac{-x}{8}=\frac{-1}{3}
$$

Nasty chan rule Index form first. Could use $u=1+2 x^{1 / 2}$

$$
\begin{aligned}
\therefore \frac{d u}{d x} & =2 \cdot \frac{1}{2} \cdot x^{-1 / 2} \\
& =x^{-1 / 2}
\end{aligned}
$$

$$
\therefore y=3 u^{-1} \frac{d y}{d u}=\frac{-3}{u^{2}}
$$

$$
\frac{d y}{d x}=\frac{d y}{d u} \times \frac{d y}{d x}
$$

$$
=\frac{-3}{(1+2 \sqrt{x})^{2}} \cdot \frac{1}{\sqrt{x}}
$$

$$
=\frac{-3}{\sqrt{x}(1+2 \sqrt{x})^{2}}
$$

f) $\frac{\operatorname{cosec}^{2} x-1}{\cos ^{2} x}=\operatorname{cosec}^{2} x$

NB:
Pythagoras:

$$
\begin{aligned}
& \cos ^{2} x+\sin ^{2} x=1 \\
& \therefore \sin ^{2} x \quad \cot ^{2} x+1=\operatorname{cosec}^{2} x \\
& \text { HS }=\frac{\operatorname{cosec}^{2} x-1}{\cos ^{2} x} \\
&=\frac{\cot ^{2} x}{\cos ^{2} x} \quad \text { by Pyth } \\
&=\frac{\cos ^{2} x}{\sin ^{2} x} \cdot \frac{1}{\cos ^{2} x} \\
&=\frac{1}{\sin ^{2} x} \\
&=\operatorname{cosec}^{2} x=\text { RUS }
\end{aligned}
$$

d) $x^{2}-m x-1=0$

Two real unequal roots $\Rightarrow \Delta>0$

$$
\begin{aligned}
\Delta & =b^{2}-4 a c \\
& =m^{2}-4(-1) \\
& =m^{2}+4
\end{aligned}
$$

This is a parabola with vertex $(0,4)$ and is concave up.
$\therefore \Delta \geqslant 4$ for all m as required

QUESTION 14
a) $y=m x \quad y=4 x^{2}+1$

For parabola, tangent gradient function:

$$
\frac{d y}{d x}=8 x
$$

$$
\therefore m=8
$$

c)

Period halved $\quad y=A \cos \frac{x}{n}$
Amplitude doubled

