

Full	Name	0	-
Teac	her:		_

2017 YEAR 11 PRELIMINARY EXAMINATION

Mathematics

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black pen
- Board-approved calculators may be used
- A reference sheet is provided

Total marks - 70 Section I 10 marks

Use the multiple choice answer sheet

Section II

60 marks

Start a new answer booklet for each of these questions. No answers to be written on question booklet.

Section I (10 marks)

Use the multiple-choice answer sheet for Questions 1-10

1. Simplify $\frac{x^3 + x}{x}$ (A) $x^2 + 1$ (B) $x^2 + x$ (C) $x^3 + 1$ (D) x^3 2. $3^{500} \times 3^{20} =$ (A) 9^{520} (B) $9^{10\,000}$ (C) $3^{10\,000}$ (D) 3^{520}

ş

- 3. Which of these is a function? (A) $y^2 = x$ (B) y = 1 (C) $x^2 + y^2 = 4$ (D) x = 2
- 4. Which graph best represents y = |x| 2?

-1

-2 \

5. If $y = 2(3x - 1)^{-4}$, which of the following is the correct expression for $\frac{dy}{dx}$?

(A)
$$\frac{-24}{(3x-1)^5}$$
 (B) $\frac{1}{24(3x-1)^5}$ (C) $\frac{1}{8(3x-1)^5}$ (D) $\frac{8}{(3x-1)^5}$

6. Evaluate 43.52×6.23 (A) 1.9 (B) 1.95 (C) 2.0 (D) 3.8

7. The quadratic equation $x^2 - 3x - 9 = 0$ has roots α and β . What is the value of $\frac{1}{\alpha} + \frac{1}{\beta}$? (A) 3 (B) $-\frac{1}{3}$ (C) $\frac{1}{3}$ (D) - 3

8. For what values of *r* does the equation $rx^2 + rx + 1$ have two unequal real roots?

(A) r < 0 (B) r > 4 (C) r < 0, r > 4 (D) 0 < r < 4

9. For what values of p is the line px + 2y = 0 parallel to the line 8x + py = 0? (A) p = 4 (B) p = -4 (C) $p = \pm 4$ (D) $p = \pm 16$

10. Simplify $\operatorname{cosec}^2 x \operatorname{sec}^2 x - \operatorname{cosec}^2 x$ A) $\operatorname{cosec}^2 x$ B) $\sin^2 x$ C) $\tan^2 x$ D) $\operatorname{sec}^2 x$

1 Section II Question 11 (15 marks) Start a new answer booklet Marks Solve the equation $2\cos x = \sqrt{2}$ for $0^\circ \le x \le 360^\circ$ 3 a) Consider the function $y = \sqrt{9 - x^2}$. b) Sketch the graph of the function. i) 2 State the range of the function. ii) **Passa** Solve the inequality $|5x-2| \ge 4$. 2 c) Differentiate with respect to xd) $y = \frac{x}{2x^2 + 1} \,.$ i) 2 $y = x(2x+1)^2$ 2 ii) Find the point of intersection of the lines 4x - 3y - 3 = 0 and 2 e) x - 3y + 15 = 0

f) F x

1

Quest	Question 12 (15 marks) Start a new answer booklet	
a)	Solve the equation $x(x-5) = -6$.	2
b)	Find the radius of the circle with equation $x^2 + y^2 - 4y - 12 = 0$.	1
c)	Find the gradient of the tangent to curve $y = \sqrt{x^2 + 4}$ at the point (0, 2).	2
d)		3
e)	Consider the function $f(x) = px^2 - 2x$. Given that $f(1) = f(-2)$, find the value of p .	2
f)		

5

T

Marks

Find a quadratic equation with roots $\sqrt{2}$ and $-\sqrt{2}$. a) b) 3 c) Solve $2\log_7 4 = \log_7 2x - \log_7 3$. 2 The tangent to the parabola $y = \frac{1}{4}x^2 - 4x$ at a point P has a d) 3 gradient of -6. Find the coordinates of the point P. Find the equation of the normal to the curve $y = \frac{3}{1+2\sqrt{x}}$ at e) 4 the point where x = 1.

f) Show that $\frac{\csc^2 x - 1}{\cos^2 x} = \csc^2 x$

 $\mathbf{2}$

2017 Practice Advanced $x^{3} + x = x(x^{2} + 1)$ $\frac{6}{\sqrt{43.52 \times 6.23}}$ $= \chi^{2} + 1 \qquad (\chi \neq 0) (A)$ = 3.829305461 (calc) = 3.8 to 2 sig. figs (D) 2. $3^{500} \times 3^{20} \pm 3^{520}$ (D)7. $x^2 - 3x - 9 = 0$ $1 + 1 = \alpha + \beta$ Multiply =) add the indices d B aß 3. (A) $y^2 = x$ (NO) = (-3) (-9)(B) y=1 The (YES) = 1/2 (c)(c) $\chi^2 + y^2 = 4$ (NO) 8. rx2+rx+1 2 unequal real roots = 170 (b) $\chi = 2$ (ND) r2-4r70 r(r-4) > 0Must be 1 y for each x! (B) ir to or ryt (C)4, y=|x| ->x y = |x| - 2 = 3 shift down9 px+2y=0 8x+py=0 2y = -px $py = -\delta x$ (B)by 2 27 $\frac{y = -8}{D}$ $\frac{y = -P_{1}}{2}$ 5, y=2(3x-1)-4 $\frac{1}{2} - \frac{P}{P} = -\frac{8}{2}$ $dy = 2 \times (-4) \times (3) \times (3) \times (-1)^{-3}$ $p^2 = 16$ $p = \pm 4$ dr. = - 年祭 (3水-1)3 (C) $= -\frac{2}{3} \frac{3}{3} \frac$ (A)

10, $\cos^2 x \sec^2 x - \csc^2 x$	c) $ 5x-2 \neq 4$
= $\cos ec^{2} \times (\sec^{2} \times - 1)$	5x-274 -(5x-2)74
	5x76 -5x+234
$M_{\Theta W} = \cos^2 \Theta + \sin^2 \Theta = 1$	2675 -522
$\left(\frac{1}{2}806^{2}\theta\right)cot^{2}\theta+1=cosec^{2}\theta$	§ x <-2
$(\pm 605^2\theta)$] + tan ² $\theta = sec^2\theta$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
i'i LITS = COSECTL . tanza	Always 2 processes, + LHS, -LHS
$=$ 1 sin^2sc	and check your answers!
Sin ² 7(cos ² ,((by substituting a value)
)	
	d) i) $y = x$ $u = x = y^{-1} = 1$
= LHS	$2x^{2}+1$ $\sqrt{-2x^{2}+1}$ $\sqrt{-4x}$
Question 11	$dy = (2\chi^2 + 1).1 - \chi.4\chi$
a) $2\cos x = \sqrt{2}$ $0 \le x \le 360^{\circ}$	$\overline{d_{2}c}$ $(2x^2+1)^2$
$\frac{\cos x = \sqrt{2}}{2} \qquad \frac{s}{r} \qquad \frac{r}{v} < \frac{r}{c}$	$= 2x^2 + 1 - 4x^2$
2 TVc	$(2x^{2}+1)^{2}$
$7c = 45^{\circ}, 360 - 45^{\circ}$	$= -2\chi^2 + 1$
= 45°, 315°	$(2\chi^2 + 1)^2$
	Never expand the denominator
b) $y = \sqrt{q - xc^2}$	
i) semicircle centre(0,0)	ii) $y = x (2x+1)^{2} u = x u^{1} = 1$
n radius = 3	$V = (2x+1)^2$
3	v' = 4(2x+1)
	$dy = (2x+1)^2 \times 1 + x \cdot 4(2x+1)$
~3 3	dx
	= (2x+1)[2x+1+4x]
11) Range : [-3,3]	= (2x+1)(6x+1)
~	
• 	Check reference sheet.
	Note: retained factored form to
	make simplifying easy
	\checkmark \checkmark \sim

e) 4x-3y-3=0 0	c) $y = \sqrt{x^2 + 4}$
x-3y+15=0 2	$=(\chi^{2}+4)^{1/2}$
-	$\frac{dy}{dx} = \frac{1}{2} \times \frac{2}{x} \left(\frac{x^2 + 4}{x^2 + 4}\right)^{-1/2}$
For point of intersection, solve	Jr 2
simultaneously	~ X
	$= \frac{\chi}{\sqrt{\chi^2 + 4}}$
(1-2) $3x - 18=0$	At (0,2), gradient of
376=18	tangent
x=6	m = dy = 0
sub into D	dir Votty
24-34+3=0	= 0
34 = 27	
y=9	For the gradient, always
\bigcirc	substitute the x-value into dy
(x=6, y=9 ie (6,9)	ত্রি
0 1	e) $f(x) = px^2 - 2x$
Answer the question. Point of	Given $f(1) = f(-2)$
intersection means courclinate	f(i) = p - 2
	f(-2) = 4p + 4
QUESTION 12	(1, 4p+4=p-2)
a) $x(x-5) = -6$	3p=-6
$\pi^2 - 5 \times + 6 = 0$	p = -2
(x-3)(x-2)=0	•
(1) 26=3,2	QUESTION 13
,	a) $\alpha = \sqrt{2} \beta = -\sqrt{2}$
b) $2(^2+y^2-4y-12=0)$	$Q(x) = (x - \alpha)(x - \beta)$
Complete the square on y:	$= \chi^2 - (\alpha + \beta)\chi + \alpha\beta$
$x^{2} + [(y-2)^{2} - 4] - 12 = 0$	$= \chi^2 - (\sqrt{2} - \sqrt{2})\chi + \sqrt{2} \cdot (-\sqrt{2})$
	$=x^{2}-2$
$7(^{2} + (y-2)^{2} - 16 = 0$	
$7(^{2} + (y-2)^{2} = 16$	This is monic. Could be
" radius 15 4 (15)	$ab(2-2)$ for $a \neq 0$
{ centre 15 (0,2)}	``````````````````````````````````````

c) 2 log 4 = log 2x - log 3	$e) y = 3$ $1 + 2\sqrt{5}x$
$109_{-}4^{2} = 109_{-}\frac{2x}{3}$	$= 3(1+2x^{1/2})^{-1}$
$4^{2} = 2z$	$dy = 3 \times (-1) \times (2 \pi^{-1/2}) (1 + 2 \chi^2)^{-2}$
$\frac{4^{2}-2x}{3}$	an 2
$\gamma L = \frac{4^2 + 3}{3}$	
2	$\sqrt{x(1+2\sqrt{x})^2}$
= 24	At x=1
	dy = -k3
Log laws: $\log_{a} x^{n} = n \log_{a} x$	dx 1×32
$\log_{\alpha} x - \log_{\alpha} y = \log_{\alpha} \frac{x}{y}$	$=-\frac{3}{9}$
y y	$=\frac{1}{2} = -\frac{1}{3}$
d) $y = \frac{1}{4}x^2 - 4x$	Þ 3
Gradient function:	
$\frac{dy}{dy} = \frac{2 \times 1 \times 2 - 4}{4}$	Masty chain rule Index form
dru 4	first. (ould use $u = 1 + 2x^{1/2}$
= 1 x - 4	$\frac{dy}{dy} = 2 \cdot \frac{1}{2} \cdot \frac{1}{x^{-1/2}}$
1f m=-6	$circ = \frac{-1}{2}$ = χ
$\frac{1}{2}x - 4 = -6$, y= 3 u-1 dy = -3
$\frac{2}{1} = -2$	du uz
- 7L = -4	$dy = dy \times dy$
$A \in x = -4$	dhi diy dhi
$y = \frac{1}{4} \left(-4 \right)^2 - 4 \left(-4 \right)$	$\frac{-3}{\left(1+2\sqrt{5}\right)^2} \sqrt{5}c$
= 4 + 16	= -3
= 20	$\overline{5i}(1+2\overline{5i})^2$
P = (-4, 20)	

P) $cosec^{2}\pi - 1 = cosec^{2}\pi$ d) $\chi^2 - m\chi - 1 = 0$ C05271 Two real unequal roots = $\Delta > 0$ NB $\Delta = b^2 - 4ac$ Pythagoras: $= m^{2} - 4(-1)$ $\cos^2 x + \sin^2 x = 1$ $= m^{2} + 4$ $\pm \sin^2 \pi \cos^2 \pi \cos^2 \pi \cos^2 \pi$ This is a parabola with vertex (0,4) LHS = cosec²7c-1 and is concave up. : A>4 for all m $(\sigma s^2 \gamma c)$ $= \frac{\cot^2 x}{\cos^2 x}$ by Pyth. os required $= (05^{2})(1)$ $Sin^2)($ $(os^2)($ SING = cosec² x = RHS as required QUESTION 14 a) $y = m_{2} y = 4x^{2} + 1$ For parabola, tangent gradient function: dy = 8x.' m=8 c) $_{2}'$ 3600 1800 -2 Period halved y=Acos x Amplitude doubled