

SCEGGS Darlinghurst

2008

Preliminary Course
Semester 2 Examination

Mathematics

Outcomes Assessed: P2 - P8 Task Weighting: 40\%

General Instructions

- Reading time - 5 minutes
- Working time - 2 hours
- Write using blue or black pen
- Attempt all questions and show all necessary working
- Answer all questions on the pad paper provided
- Write your Student Number at the top of each page
- Begin each question on a new page
- Marks will be deducted for careless or badly arranged work
- Mathematical templates, geometrical equipment and scientific calculators may be used

Centre Number

BLANK PAGE

Question 1 (13 marks)
(a) Evaluate $\frac{542}{3.17 \times 10^{15}}$ expressing your answer in scientific notation correct to 3 significant figures.
(b) Simplify $|-7|-|4|$
(c) A car salesman buys a second hand car and then sells it at a profit of 37.5%. If the car salesman sells the car for $\$ 30800$, what price did he pay for the car originally?
(d) Express $\frac{1}{4-\sqrt{3}}+\frac{1}{4+\sqrt{3}}$ in simplest form.
(e) Factorise fully:

$$
8-x^{3}
$$

(f) Solve:
(i) $\frac{1}{2^{x}}=8$

1
(ii) $\quad|2 x-5|=7-3 x$

Question 2 (13 marks)
(a)

In the above diagram $A(1,0), B(4,1)$ and $C(-1,6)$ are points on the number plane.
Copy or trace this diagram into your writing booklet.
(i) Show that the equation of $A C$ is $3 x+y-3=0$
(ii) Find the length of $A B$
(iii) Show that $A B \perp A C$
(iv) Find $\tan \theta$
(v) On your diagram, shade the region satisfying the inequality

$$
3 x+y-3 \leq 0
$$

(b) Differentiate:
(i) $2 x^{3}-\frac{1}{x}+5$
(ii) $\quad\left(3 x^{2}+4\right)^{5}$
(iii) $x \sqrt{1-x}$

Question 3 (13 marks)
(a) Solve $\sqrt{2} \sin \theta+1=0$ for $0^{\circ} \leq \theta \leq 360^{\circ}$
(b) Solve $12+4 x-x^{2}>0$
(c) A ship sails from point A on a bearing of 237° for a distance of 423 kilometres to point B. The ship then turns and sails due south to point C. The bearing of A from C is 041°.
(i) Draw a diagram showing this information
(ii) Find the size of $\angle B A C$, to the nearest degree
(iii) Calculate the distance (to the nearest km) the ship must travel back to point A from C.
(d) If α and β are the roots of the quadratic equation $2 x^{2}-6 x+3=0$ find:
(i) $\alpha+\beta$
(ii) $\alpha \beta$

1
(iii) $\alpha^{2}+\beta^{2}$
(e) The diagram below shows part of the graph of an even function

Copy and complete the graph of the function.

Question 4 (13 marks)
(a) Find the quadratic equation whose roots are 2 and - 3
(b) Consider the function $y=\frac{1}{x}+2$
(i) State the domain and range of the function
(ii) Find $\frac{d y}{d x}$
(iii) Hence or otherwise explain why the gradient of

$$
y=\frac{1}{x}+2 \text { is always negative }
$$

(c)

The triangle $A B C$ has a right angle at $B . D$ is the midpoint of $A B$ and $D E$ is parallel to $B C$. Copy this diagram into your writing booklet.
(i) Prove that $A D E$ is a right angle 1
(ii) Prove that triangle $A E D$ is congruent to triangle $B E D$
(iii) Prove that $B E=E C$
(d) Express $3 x^{2}-7 x-2$ in the form $a x(x+1)+b x^{2}+c(x+1)$

Question 5 (13 marks)
(a) The angles in a regular polygon are 156° each. Find the number of sides in the polygon.
(b) Find the values of q for which the expression $2 x^{2}-x+4 q$ is positive definite
(c) Differentiate from first principles

$$
f(x)=2 x^{2}-6 x
$$

(d) Prove that:

$$
\sin \theta(1+\tan \theta)+\cos \theta(1+\cot \theta)=\frac{\sin \theta+\cos \theta}{\sin \theta \cos \theta}
$$

(e) Maud was asked to sketch the graph of $y=|6-3 x|$ showing all important features

Below is her solution:

The solution is incorrect.
Explain why this is incorrect and draw a correct solution.

Question 6 (13 marks)
(a) Simplify $\tan ^{2} \theta\left(1-\sin ^{2} \theta\right)$

2
(b) For the function defined by:

$$
f(x)=\left\{\begin{array}{lll}
3-x^{2} & \text { for } & -2 \leq x \leq-1 \\
2 x & \text { for } & -1<x<1 \\
x^{2}+1 & \text { for } & 1 \leq x \leq 2
\end{array}\right.
$$

$\begin{array}{lll}\text { (i) } \text { Evaluate: } & (\alpha) f(-2) & \mathbf{1} \\ & (\beta) f(1) & \mathbf{1}\end{array}$
(ii) Sketch the graph of the function in the given domain.
(c) Find the value of x for which the curve $y=(3 x-4)^{3}$ cuts the x-axis and find the gradient of the tangent at this point.
(d) Solve $x^{4}-5 x^{2}-36=0$

End of paper

2008 Mathematics Sem 2 Exam Solutions
Q1 SL
Reas 3
a) $1.71^{-13} \quad \sqrt{ }($ (Lorrect s.f.) $)$
b) $7-4=3$
c)

$$
\begin{aligned}
137.5 \% & =\$ 30800 \\
1 \% & =\$ 224 \\
100 \% & =\$ 22400
\end{aligned}
$$

d)

$$
\begin{aligned}
& \frac{1}{4-\sqrt{3}}+\frac{1}{4 \pm \sqrt{3}} \\
= & \frac{4+\sqrt{3}+4-\sqrt{3}}{16-3} \\
= & \frac{8}{13} \quad \sqrt{3}
\end{aligned}
$$

e) $8-x^{3}=(2-x)\left(4+2 x+x^{2}\right)$
f) i)

$$
\begin{aligned}
2^{-x} & =2^{3} \\
-x & =3 \\
x & =-3
\end{aligned}
$$

ii) $|2 x-5| \equiv 7-3 x \quad$ Reas 3

$$
\text { (1) } \begin{aligned}
2 x-5 & =7-3 x \\
5 x & =12 \\
x & =2 \frac{2}{5}
\end{aligned}
$$

(2) $-2 x \pm 5=7-3 x$

$$
x=2
$$

\checkmark both sotutions
ctect

Diagrams often too space: Ruler and Pencil is required. \qquad

i)

$$
\begin{aligned}
A C: M & =\frac{6-0}{-1-1} \\
& =-3
\end{aligned}
$$

$$
\text { eqn: } y-0=-3(x-1)
$$

$$
y=-3 x+3 \quad \sqrt{ }=
$$

$$
3 x+y-3=0
$$

ii)

$$
\begin{aligned}
A B & =\sqrt{(4-1)^{2}+(1-0)^{2}} \\
& =\sqrt{9+1} \\
& =\sqrt{10}
\end{aligned}
$$

iii)

$$
\begin{aligned}
M_{A B} & =\frac{1-0}{4-1} \quad M_{A C}=-3 \\
& =\frac{1}{3} \quad f \\
M_{A B} \times M_{A C} & =\frac{1}{3} \times-3 \\
& =-1
\end{aligned}
$$

$$
\therefore A B \perp A C
$$

iv)

$$
\begin{aligned}
A C & =\sqrt{(1--1)^{2}+(0-6)^{2}} \\
& =\sqrt{4+36} \\
& =\sqrt{40} \\
& =2 \sqrt{10} \\
\tan \theta & =\frac{A C}{A B} \\
& =\frac{2 \sqrt{10}}{\sqrt{10}} \\
\tan \theta & =
\end{aligned}
$$

nest have $\tan \bar{\theta}=2$.
The angle was not requested. Read questicās carefully.
b) i) $2 x^{3}-x^{-1}+5 \quad$ Cate 5

$$
\begin{aligned}
& \frac{d}{d x}=6 x^{2}+x^{2} \\
& \frac{d}{d x}=6 x^{2} \pm \frac{1}{x^{2}}
\end{aligned}
$$

ii) $\frac{d}{d x}=5.6 x\left(3 x^{2}+4\right)^{4} J$ Remember to differentiate

$$
\frac{d}{d x}=30 x\left(3 x^{2}+4\right)^{4} \quad \sqrt{3} x^{2} \pm 4
$$

iii) $x(1-x)^{\frac{1}{2}}$

$$
\begin{array}{rl}
u=x & v \\
u^{\prime}=1 & =(1-\bar{x})^{\frac{1}{2}} \\
& =\frac{-1}{2 \sqrt{1-x}} \\
& =\frac{1}{d x} \equiv(1-x)^{-\frac{1}{2}} \\
\frac{d}{d x} & =\frac{-x}{2 \sqrt{1-x}}
\end{array}
$$

+ This is a product Rule
Question.

$$
\begin{aligned}
& =-\frac{1}{2}(1-x) \\
& =\frac{-1}{2 \sqrt{1-x}} \quad 1 \text { many cases. }
\end{aligned}
$$

a) $\sqrt{2} \sin \theta+1=0$

$$
\sin \theta=-\frac{1}{\sqrt{2}}
$$

sin -ve in Q3, Q4
heain this techrique. acute L : $\sin \theta=\frac{1}{\sqrt{2}}$

$$
\theta=45^{\circ}
$$

$$
\begin{aligned}
\therefore \theta & =180+45^{\circ}, 360-45 \\
\theta & =225^{\circ}, 315^{\circ}
\end{aligned}
$$

- b)

Reas 2 Veny hadly done.
$-\left(x^{2}-4 x-12\right)>0$

$$
-(x-6)(x+2)>0
$$

$\therefore-2 \leq x<6$
c)

hrualy success fue if a graph is drawn ito sotue the irequality Factenice carefuely.

Duagramis oftem fat Loo smale.
othenvire mastey wele done.
d) $2 x^{2}-6 x+3=0$
i) $\alpha+\beta=\frac{6}{2}=3 \quad 7$
host it regents threw this work.
ii) $\alpha \beta=\frac{3}{2}$
iii)

$$
\begin{aligned}
\alpha^{2}+\beta^{2} & =\frac{(\alpha+\beta)^{2}-2 \alpha \beta}{3^{2}-2 \times \frac{3}{2}} \\
& =6
\end{aligned}
$$

e)

Com 1
Some really thad graph here? They did - wat really look mymmotuce though that was harry the int ention.

QL AV
a) $(x-2)(x+3)=0 \quad$ wall done, metre sure you put $=0$
b) $y=\frac{1}{x}+2$
i) D : all reat \bar{x}, where $x \neq 0$ most wen able to determine the asymplates R : all rout y, where $y \neq 2$ forrectly allhogh mixed y tote $x, x y$ plane also acute all real x
ii) $\bar{y}=x^{-1}+2$ Caleb 1 not just domain: $x \neq 0$

$$
\begin{aligned}
\frac{d y}{d x} & =-x^{-2} \\
& =-\frac{1}{x^{2}}
\end{aligned}
$$

iii) $=\frac{1}{x^{2}}$ is the gradient function Com 1 No I well explained. In Fo $\begin{array}{r}\operatorname{since} \\ \text { then } \\ x^{2}\end{array} \frac{1}{x^{2}} \geq 0$
$\therefore-\frac{1}{x^{2}}<0$
hence the gradient must break the ne blown the gradient
\qquad always be negative
c) i) $\angle A D E=\angle A B C$ (corresponding angles Rems 5

$$
=90^{\circ-}
$$

are equal on porallat please team your lines) and
$\begin{aligned} \text {-ii) } \angle A D E & =10^{\circ}(\text { supplementary angles } \\ \therefore \angle E D B & \left.=90^{\circ} \text { add to } 180^{\circ}\right)\end{aligned}$ For each statement you make you must hare a a meson AETER MSSOME some ling
is tue unless you mid is tue unless you tue proved It:-
$D E$ is common Or verse a graph af the Paction to acyphains why the gradient is always negative.
iii) Prove $B E=E C$

d) $a x(x+1) \neq b x^{2}+c(x \pm 1)$ Rear 3 Those who had tear nt

$$
\begin{aligned}
& =a x^{2}+a x+b x^{2}+c x+c \\
& =x^{2}(a+b)+x(a+c)+c
\end{aligned}
$$

compere $3 x^{2}=7 x-2$

$$
\begin{aligned}
c=-2, & \bar{a}+c & =-7, a+b & =3 \\
a-2 & =-7, & -5 \pm b & =3 \\
\bar{a} & =-5, & \bar{b} & =8
\end{aligned}
$$ their work hod no problem getting to.

$$
\begin{aligned}
& \therefore 3 x^{2}-7 x-2 \\
& =-5 x(x+1)+8 x^{2}-2(x+1)
\end{aligned}
$$

Some lost I murk lat not completing the question and $a x(x+1)+b x^{2}+c(x+1)$

NH
Q5 Cate 3 Com 2 Reas 6
a) int $L=156^{\circ}$
ext $L=24$
OR use $\left(\frac{n-2) \times 180^{\circ}}{}=156^{\circ}\right.$ and solve this equation.

$$
\# \text { sides }=360 \div 24
$$

$$
=15
$$

This part was pretty well done \qquad
b) pos. def. means yeas 3
(1) concave up $a>0$
(2) no real roots $\Delta<0$
\Rightarrow Think about the curve t lt's easier to remember the facts.
concave up $a>0$
No roots $4<0$
Concave up since $a=2, a>0$
no real rots when $\triangle<0$

$$
\begin{array}{r}
\therefore b^{2}-4 a c<0 \\
-1-4 \times 2 \times 4 q \leq 0 \\
1-32 q \leq 0 \\
-32 q<-1 \\
q>\frac{1}{32}
\end{array}
$$

You can get this mark if you correctly solve your
inequality.
c).

$$
\begin{aligned}
f(x) & =2 x^{2}-6 x \\
f(x+h) & =2(x+h)^{2}-6(x+h) \\
& =2 x^{2}+4 x h+2 h^{2}-6 x-6 h \\
f(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \\
& =\frac{2 x^{2}+4 x h+2 h^{2}-6 x-6 h-2 \pi^{2}+6 x}{h} \\
& =4 x-6
\end{aligned}
$$

Poorly set out even though it was in due last exam a few wees ago!
Träctise until you get it right of you know you know formula!!

C 66^{5}
Cal 3 Com 3 Reas 5
a) $\tan ^{2} \theta(1-\sqrt[\sin ^{2} \theta]{\text { Peas } 2}$

$$
\begin{aligned}
& \equiv \tan ^{2} \theta \cdot \cos ^{2} \theta \\
& =\frac{\sin ^{2} \theta}{\cos ^{2} \theta} \cdot \cos ^{2} \theta \\
& =\sin ^{2} \theta
\end{aligned}
$$

b) ic)

$$
\begin{aligned}
f(-2) & =3-4 \\
& =1
\end{aligned}
$$

B) $f(1)=T^{2}+1$

$$
=2
$$

ii) $\quad 4 x \quad \operatorname{tom}-3$

c) cuts x-axis when $y=0 \quad$ Cate 3

$$
\begin{aligned}
& 0=(3 x-4)^{3} \\
& 3 x-4=0 \\
& 3 x=4 \\
& x=1 \frac{1}{3}
\end{aligned}
$$

$$
\begin{aligned}
y & =(3 x-4)^{3} \\
y^{\prime} & =3 \cdot 3(3 x-4)^{2} \\
y^{\prime} & =9(3 x-4)^{2} \\
& a+\left(1 \frac{1}{3}, 0\right) \\
m_{T} & =9\left(3 \cdot 1 \frac{1}{3}-4\right)^{2} \\
& =9(0)^{2} \\
& =0
\end{aligned}
$$

d) $x^{4}-5 x^{2}-36=0$
let $u=x^{2}$

$$
\begin{aligned}
& u^{2}-5 u-36=0 \\
& (u-9)(u+4)=0 \\
& u=9-4 \\
& -9=x^{2} \text { and }-4=x^{2}
\end{aligned}
$$

$$
\pm 3=x
$$

No solans

