

Centre Number

Student Number

SCEGGS Darlinghurst

2009

Preliminary Course Semester 2 Examination

Mathematics

Outcomes Assessed: P2 – P8 Task Weighting: 40%

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using blue or black pen
- Attempt **all** questions and show all necessary working
- Answer all questions on the pad paper provided
- Write your Student Number at the top of each page
- Begin each question on a new page
- Marks will be deducted for careless or badly arranged work
- Mathematical templates, geometrical equipment and scientific calculators may be used

Total marks – 78

• Attempt Questions 1 – 6

Question	Calc	Comm	Reasoning	Marks
1				/13
2				/13
3				/13
4				/13
5				/13
6				/13
TOTAL				/78

BLANK PAGE

2

Question 1 (13 marks)

(a) Find the value of
$$\sqrt{\frac{5.36 + 31.98}{(4.75)^2}}$$
 to 3 significant figures. 2

(b) Factorise
$$8x^2 - 10x + 3$$
. **1**

(c) Express 0.18 in the form
$$\frac{a}{b}$$
, where *a*, *b* are positive integers. 2

(d) After a discount of 20% off the original marked price. Jill paid \$160 for a **2** sweater. What was the original price of this sweater?

(e) Rationalise the denominator
$$\frac{\sqrt{3}}{2+\sqrt{3}}$$
 2

(f) Find the exact value of $\cot 210^{\circ}$.

(g) Solve the equation
$$\frac{x}{3} - \frac{x+1}{2} = 4$$
. 2

Question 2 (13 marks)

(a) On the number plane A = (0, -3) B = (5, 0) C = (-1, 2).

(\mathbf{i})	State the co-ordinates of D such that ARCD is a parallelogram	1
(1)	State the co-ordinates of D such that ADCD is a paraherogram.	1
< /	1 0	

- (ii) Find the length of AB as a surd. 2
- (iii) Show that the equation of AB is 3x 5y 15 = 0. 2
- (iv) Find as a surd the perpendicular distance of C from AB. 2
- (v) Hence find the area of this parallelogram. 1

Question 2 continues on the next page

Question 2 (continued)

- (b) Find a quadratic equation whose roots are -5 and 2.
- (c) Find the domain and range $y = \frac{2}{x-1}$.
- (d) Solve $x^2 > 4$.

1

2

Marks

2

page 4

Ques	tion 3 ((13 marks)	Marks		
(a)	If $f(x) = 1 - 2x$:				
	(i)	find the value of $f(-3)$.	1		
	(ii)	for what value of x does $f(x) = 5$?	1		
(b)	A parabola has equation $(x - 3)^2 = 16(y + 1)$.				
	Find:				
	(i)	the vertex.	1		
	(ii)	the focus.	1		
	(iii)	the equation of the directrix.	1		
	(iv)	the equation of the axis of symmetry.	1		

(c) If α and β are the roots of the equation $x^2 - 2x + 4 = 0$, find the value of:

(i)
$$\frac{1}{\alpha} + \frac{1}{\beta}$$
 2

(ii)
$$\alpha^2 + \beta^2$$
 2

(iii)
$$\frac{2-\alpha}{1+\beta} + \frac{2-\beta}{1+\alpha}$$
 3

Question 4 (13 marks)

- (a) The point P(x, y) moves such that its distance from the point A(2, -4) is twice its distance from the point B(-1, 2).
 - (i) Show that the equation of the locus of the point P(x, y) is $x^{2} + 4x + y^{2} 8y = 0$.
 - (ii) Find the centre and radius of this circle.

2

Marks

- (b) Find the equation of the normal to the curve $y = \sqrt{x+2}$ at the point (7, 3). 3
- (c) The diagonals of a quadrilateral *MNOP* intersect at *T*. **3** Given MT = OT and NT = PT, prove MN = OP.

(d) Solve for x if |x-2| = 2x - 1.

3

Question 5 (13 marks)Marks(a) (i) Write down the discriminant of $2x^2 + 3x + k$.1(ii) For what values of k does $2x^2 + 3x + k = 0$ have no real roots.1

(b) Differentiate each of the following.

(i)
$$y = 3x^2 + 9x - 5$$
 1

(ii)
$$y = \frac{3x}{x^2 - 2x}$$
 2

(iii)
$$y = (x-5)^2 (2x+3)$$
 2

(c) From a port P a lighthouse L is seen 2.4km away on a bearing of 035° . A boat leaves port and sails due East to a point B, 4.2km from the lighthouse.

(i)Draw a diagram showing this information1(ii)Calculate the size of
$$\angle LBP$$
, to the nearest degree.2(iii)Hence find the bearing of the boat from the lighthouse.1

(d) If
$$\cos x > 0$$
 and $\sin x = -\frac{8}{17}$, find the exact value of $\tan x$. 2

Question 6 (13 marks)

(a) (i) Write down the equation of this semicircle.

- (ii) Prove that this is an even function.
- (b)The interior angles of a regular polygon are 135°.2Find the number of sides in the polygon.2
- (c) (i) Draw a neat sketch showing the graphs $x^2 + y^2 = 4$ and $y = 2^x$. 2
 - (ii) Shade the region on your sketch where $x^2 + y^2 \le 4$ and $y \le 2^x$. 1

(d) Solve the equation
$$\sin x = -\frac{1}{2}$$
 for $0 \le x \le 360^\circ$. 2

(e) Prove
$$\frac{1 + \cot x}{1 + \tan x} = \cot x$$
. 3

End of Paper

1

2

BLANK PAGE