

Centre Number

SCEGGS Darlinghurst

2010

Preliminary Course Semester 2 Examination

Mathematics

Outcomes Assessed: P2 – P8 Task Weighting: 40%

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using blue or black pen
- Attempt **all** questions and show all necessary working
- Answer all questions on the pad paper provided
- Write your Student Number at the top of each page
- Begin each question on a new page
- Marks will be deducted for careless or badly arranged work
- Mathematical templates, geometrical equipment and scientific calculators may be used

Total marks – 78

• Attempt Questions 1 – 6

Question	Calc	Comm	Reasoning	Marks
1				/13
2				/13
3				/13
4				/13
5				/13
6				/13
TOTAL				/78

BLANK PAGE

Question 1 (13 marks)

(a) Express 0.83 in the form
$$\frac{a}{b}$$
, where a and b are positive integers. 2

(b) The crowd attendance at a football game on the weekend was 15 660 which
 was a decline of 10% from the previous weekend. How many people attended the previous weekend?

(c) Factorise fully:
$$3x^2 - 7x - 6$$
. 2

- (d) Find the exact value of $\cos 225^{\circ}$.
- (e) Find the value of v in $v^2 = u^2 2as$ when $u = 6.4 \times 10^7$, a = 21.5 and $s = 5.7 \times 10^{13}$. Give your answer to 3 significant figures.

(f) Find the values of a and b if
$$\frac{3}{\sqrt{5}-2} = \sqrt{a}+b$$
. 3

2

2

Ques	ation 2 (13 marks)	Marks
(a)	Find the size of each interior angle of a regular nonagon (9-sided polygon).	2
(b)	Solve each of the following:	
	(i) $ 2x-5 \le 7$	2

(ii)
$$3^{2x} - 10 \times 3^{x} + 9 = 0$$
 3

(c) Solve
$$\tan(\theta + 60^\circ) = \frac{1}{\sqrt{3}}$$
 for $0^\circ \le \theta \le 360^\circ$. 2

(d) α and β are the roots of the quadratic equation $x^2 - 2x + 3 = 0$. Find the values of:

- (i) $\alpha + \beta$ 1
- (ii) $\alpha^2 \beta^2$ 1

(iii)
$$\alpha^{-2} + \beta^{-2}$$
 2

Question 3 (13 marks)

(a) Differentiate each of the following with respect to *x*:

(i)
$$5x^3 + \frac{2}{x} - 3$$
 2

(ii)
$$x(2x+3)^9$$
 2

(b) Find the equation of the tangent to the curve $y = \frac{x}{x+2}$ at the point where 4 x = -1. Give your answer in general form.

(c) Consider the quadratic function
$$y = kx^2 + 6x + k$$
.

(i) Show that the function is positive definite when
$$k > 3$$
. 3

(ii) Sketch the graph of $y = 4x^2 + 6x + 4$ clearly showing any intercepts 2 with the axes and the co-ordinates of the vertex.

Question 4 (13 marks)

(i)

(a) In the diagram, *AD* and *DC* are equal to 30 cm.

- (ii) Hence find the length of *AB* to the nearest centimetre.

Question 4 continues on the next page

2

2

Marks

Question 4 (continued)

(b)

In the diagram A is the point (10, 0) and line l has the equation $3x - 4y + 20 = 0$.		
(i)	Find the co-ordinates of the point C where l intersects the y axis.	1
(ii)	<i>B</i> is on the line <i>l</i> such that <i>AB</i> is perpendicular to <i>l</i> . Find the distance <i>AB</i> .	2
(iii)	Prove that $\triangle AOC \equiv \triangle ABC$.	2
(iv)	Find the area of the quadrilateral OABC.	1
(v)	Find the gradient of <i>AB</i> and hence find the angle which <i>AB</i> makes with the positive <i>x</i> axis. Give your answer to the nearest degree.	3

Question 5 (13 marks)

(a)

Marks

2

Find the value of *x* giving reasons.

(b) Find *a*, *b* and *c* such that
$$x^2 - x + 3 \equiv a(x+1)^2 + b(x+1) + c$$
. **3**

Question 5 continues on the next page

Question 5 (continued)

(c) A boat leaves the Island of Ischia and travels 40 km on a bearing of $060^{\circ}T$ to Naples. It then turns to travel a further 45 km to the Island of Capri on a bearing of $200^{\circ}T$.

(i)	Find the size of $\angle INC$.	1
(ii)	Find the distance between the islands of Ischia and Capri to the nearest kilometre.	2
(iii)	Find the area of ΔINC . Give your answer in square kilometres to 2 significant figures.	2

Question 5 continues on the next page

Marks

Question 5 (continued)

(i)	Copy and complete the sketch so that it is an odd function.		

(ii) Write down the equation of the piecewise function drawn in part (i). 2

Question 6 (13 marks)

(a) (i) Write down the factorised form of
$$a^3 - b^3$$
. 1

(ii) Hence show that
$$\frac{\sin^3 \theta - \cos^3 \theta}{\sin \theta - \cos \theta} - 1 = \sin \theta \cos \theta$$
. 2

Write down a pair of inequations to describe the region shaded above.

(c)
$$f(x) = \frac{1}{\sqrt{x}}$$

(i) State the domain and range of
$$f(x)$$
. 2

(ii) For what value of x does
$$f(x) = 2$$
? 1

(iii) Find f'(x) and hence calculate f'(3) leaving your answer in 2 simplified surd form with a rational denominator.

(iv) Show that
$$(f(x))^3 = -2f'(x)$$
. 1

End of Paper

4

Marks

Question 1
(a) let
$$x = 0.8333...$$

 $10 x = 8.3333...$
 $10 x = 75$
 $x = \frac{35}{70} = \frac{5}{6}$
(b) $90\% = 15660$ people $\sqrt{10\%} = 17400$ people
 $10\% = 17400$ people
 $10\% = 17400$ people
 $10\% = 17400$ people
 $10\% = 17400$ people
 17400 attended the previous vectored
(c) $3x^{2} - 7x - 6$
 $= (\frac{5x - 9}{3x + 2})$
 $= (x - 3)(3x + 2)$
(d) $\cos 22.5^{\circ} = -\cos 45^{\circ}$
 $= -\frac{1}{12}$
 $(e) v^{1} = (6.44 \times 10^{\circ})^{2} - 2x 21.5 \times 5.7 \times 10^{11}$
 $= 1.6445 \times 10^{15}$
 $v = \sqrt{10.645 \times 10^{15}}$
 $= 40558599.58$
 $= 40600000$ (3 sig fig)
(f) $\frac{3}{\sqrt{5^{2}} - 2} \times \frac{\sqrt{5^{2}} + 2}{\sqrt{5^{2}} + 2} = \frac{315 + 6}{5 - 4}$
 $= \sqrt{45^{\circ}}, b = 6$
Many stylewis rounded this to 40% !!

Question 3 يدي (a) (i) $15x^2 - 2x^{-2}$ // (ii) $x \times 9(2x+3)^8 \times 2 + (2x+3)^9 \times 1$ $= 18 \times (2 \times + 3)^{8} + (2 \times + 3)^{9} / \sqrt{2}$ Calc 4. (uv' + vu') (b) $y = \frac{x}{x+2}$ $\frac{du_{3}}{dx} = \frac{(x+2)\times 1 - x\times 1}{(x+2)^{2}} \left(\frac{\sqrt{u'-uv'}}{\sqrt{2}} \right)$ $=\frac{2}{(x+2)^2}$ $x = -1 \rightarrow m_T = \frac{2}{(-1+2)^2} = 2 \sqrt{-1}$ $y = \frac{-1}{-1+2} = -1$ Equation of tangent : y - -1 = 2(x - -1)y + 1 = 2x + 22x-y+1=0 / Calc H (c) (i) Positive definite aro, \$<0. 140 62-4xkxk 40 $36 - 4k^2 < 0$ $(6-2h)(6+2h) \angle 0$ k<-3, k>3 $\sqrt{-3/10}$ Since and for positive definite Reas 3. k>3. √ (ii) y int $\rightarrow x = 0 y = 4$ Vertex $\rightarrow x = \frac{-b}{2a} = \frac{-6}{2xy} = \frac{-3}{y}$ $y = 9\left(\frac{-3}{4}\right)^2 + 6\left(\frac{-3}{4}\right) + 4 = \frac{3}{4}$ (both labelled on graph) Comm 2 13/4 →x

Question 5 (a) [GHE=74° (corresponding angles are Comm 2 Greet reason must have equal when lines are parallel) ~ been fiver to be awarded x°=107°-74° = 33° (exterior angle 2 marts. of a triangle is the sum of the two opposite interior angles) V learn this method. (b) $x^2 - x + 3 \equiv \alpha (x + 1)^2 + b(x + 1) + c$ $= \alpha (x^2 + 2x + 1) + bx + b + c$ $= ax^{2} + (2a+b)x + (a+b+c)$ comparing coefficients: x^2 : a=1coreless ercors made x: 2atb=-1 (& a=1) when substitut inf. =) b=-3 V constant: a+b+c=3 (& a=1, b=-3) => c= 5 1 Adrive is to redraw diagram + Lasel information fiven. LINC = 360-200-120 (c)(i)= 40° / 1 Incorrect (1) did not result In penalties is part (")+(") (ii) $x^2 = 40^2 + 45^2 - 2x40 \times 45 \times \cos 40$ as long as method was = 867.24 x = J867.24 = 29 km V correct. (iii) Area = 2 × 40×45 × sin 40° / = 578.5088... $= 580 \text{ km}^2 (2 \text{ sig fig})^{\vee}$ Must have 2 sig fig Label graph (No marks deducted 1 (2,3) (this time!) (d) (i) ii) x 7, 2 3 Comm 1 →x y= (3= -2<x<2 Reas 2. Recement function very (-3 $x \leq -2$ $\sqrt{}$ (-2, -3)borly done

$$\begin{array}{|c|c|c|c|c|c|}\hline \hline (a) & (i) & a^{2} + b^{2} = (a - b)(a^{2} + ab + b^{2}) \\ \hline (i) & UHS = \frac{\sin^{2} \Theta - \cos^{2} \Theta}{\sin \Theta - \cos \Theta} & -1 \\ & = \frac{(\sin \Theta - \cos \Theta)(\sin^{2} \Theta + \sin \Theta \cos \Theta - 1)}{(\sin \Theta - \sin \Theta)} \\ & = \frac{(\sin \Theta - \cos \Theta)(\sin^{2} \Theta + \sin \Theta \cos \Theta - 1)}{(a + \sin \Theta \cos \Theta - 1)} \\ & = \frac{1}{\sin \Theta} + \sin \Theta \cos \Theta - 1 \\ & = \frac{1}{\sin \Theta} + \sin \Theta \cos \Theta - 1 \\ & = \frac{1}{\sin \Theta} + \sin \Theta \cos \Theta - 1 \\ & = \frac{1}{\sin \Theta} + \sin \Theta \cos \Theta - 1 \\ & = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \\ \hline (b) & \text{Apsolute} : & y = |x - 2| \\ & Valve \\ \hline (c) & (a + 2)^{2} + y^{2} = 8 \\ & VA \\ \hline (c) & (a + 2)^{2} + y^{2} = 8 \\ & VA \\ \hline (c) & (a + 2)^{2} + y^{2} = 8 \\ & VA \\ \hline (c) & (i) & D : & x > 0 \\ & (i) & f(x) = 2 \\ & \frac{1}{\sqrt{x}} = \frac{1}{2} \\ & \frac{1}{\sqrt{x}} = \frac{1}{\sqrt{x}} \\ \hline (i) & f(x) = x^{-1/2} \\ & f'(x) = -\frac{1}{2} x^{-1/2} \\ & f'(x) = -\frac{1}{2} x^{-1/2} \\ & \frac{1}{\sqrt{x}} = \frac{-15}{\sqrt{x}} \\ \hline (ii) & f(x)^{3} \\ & = \frac{-1}{2 \times \sqrt{x}} \\ & = \frac{-1}{\sqrt{x}} \\ & = \frac{-1}{\sqrt{x}} \\ & = \frac{-1}{\sqrt{x}} \\ & = \frac{-1}{\sqrt{x}} \\ & = \frac{1}{\sqrt{x}} \\ & = \frac{1}{\sqrt{x}} \\ & = \frac{1}{\sqrt{x}} \\ & = \frac{1}{\sqrt{x}} \\ & X \\ \hline (i) & X \\ & X \\ & X \\ & Y \\ &$$