

SCEGGS Darlinghurst

2010

Preliminary Course

Semester 2 Examination

Mathematics

Outcomes Assessed: P2 - P8
Task Weighting: 40\%

General Instructions

- Reading time - 5 minutes
- Working time - 2 hours
- Write using blue or black pen
- Attempt all questions and show all necessary working
- Answer all questions on the pad paper provided
- Write your Student Number at the top of each page
- Begin each question on a new page
- Marks will be deducted for careless or badly arranged work
- Mathematical templates, geometrical equipment and scientific calculators may be used

Centre Number

BLANK PAGE

Question 1 (13 marks)
(a) Express $0.8 \dot{3}$ in the form $\frac{a}{b}$, where a and b are positive integers.

2

2 was a decline of 10% from the previous weekend. How many people attended the previous weekend?
(c) Factorise fully: $3 x^{2}-7 x-6$.
(d) Find the exact value of $\cos 225^{\circ}$.
(e) Find the value of v in $v^{2}=u^{2}-2 a s$ when $u=6.4 \times 10^{7}, a=21.5$ and $s=5.7 \times 10^{13}$. Give your answer to 3 significant figures.
(f) Find the values of a and b if $\frac{3}{\sqrt{5}-2}=\sqrt{a}+b$.

Question 2 (13 marks)
(a) Find the size of each interior angle of a regular nonagon (9-sided polygon).
(b) Solve each of the following:
(i) $|2 x-5| \leq 7 \quad 2$
(ii) $3^{2 x}-10 \times 3^{x}+9=0$

3
(c) Solve $\tan \left(\theta+60^{\circ}\right)=\frac{1}{\sqrt{3}}$ for $0^{\circ} \leq \theta \leq 360^{\circ}$.

2
(d) α and β are the roots of the quadratic equation $x^{2}-2 x+3=0$.

Find the values of:
(i) $\alpha+\beta$ 1
(ii) $\alpha^{2} \beta^{2}$

1
(iii) $\quad \alpha^{-2}+\beta^{-2}$

Question 3 (13 marks)
(a) Differentiate each of the following with respect to x :
(i) $5 x^{3}+\frac{2}{x}-3$

2

2
(b) Find the equation of the tangent to the curve $y=\frac{x}{x+2}$ at the point where $x=-1$. Give your answer in general form.
(c) Consider the quadratic function $y=k x^{2}+6 x+k$.
(i) Show that the function is positive definite when $k>3$.
(ii) Sketch the graph of $y=4 x^{2}+6 x+4$ clearly showing any intercepts with the axes and the co-ordinates of the vertex.

Question 4 (13 marks)
(a) In the diagram, $A D$ and $D C$ are equal to 30 cm .

(i) Find the size of $\angle D B A$ giving reasons.
(ii) Hence find the length of $A B$ to the nearest centimetre.

Question 4 (continued)
(b)

In the diagram A is the point $(10,0)$ and line l has the equation $3 x-4 y+20=0$.
(i) Find the co-ordinates of the point C where l intersects the y axis.
(ii) $\quad B$ is on the line l such that $A B$ is perpendicular to l.

Find the distance $A B$.
(iii) Prove that $\triangle A O C \equiv \triangle A B C$.
(iv) Find the area of the quadrilateral $O A B C$.
(v) Find the gradient of $A B$ and hence find the angle which $A B$ makes 3 with the positive x axis. Give your answer to the nearest degree.

Question 5 (13 marks)
(a)

Find the value of x giving reasons.
(b) Find a, b and c such that $x^{2}-x+3 \equiv a(x+1)^{2}+b(x+1)+c$.

Question 5 continues on the next page

Question 5 (continued)
(c) A boat leaves the Island of Ischia and travels 40 km on a bearing of $060^{\circ} T$ to Naples. It then turns to travel a further 45 km to the Island of Capri on a bearing of $200^{\circ} \mathrm{T}$.

(i) Find the size of $\angle I N C$.
(ii) Find the distance between the islands of Ischia and Capri to the nearest kilometre.
(iii) Find the area of $\triangle I N C$. Give your answer in square kilometres to 2 significant figures.

Question 5 continues on the next page

Question 5 (continued)
(d)

(i) Copy and complete the sketch so that it is an odd function.
(ii) Write down the equation of the piecewise function drawn in part (i).

Question 6 (13 marks)
(a) (i) Write down the factorised form of $a^{3}-b^{3}$.
(ii) Hence show that $\frac{\sin ^{3} \theta-\cos ^{3} \theta}{\sin \theta-\cos \theta}-1=\sin \theta \cos \theta$.
(b)

Write down a pair of inequations to describe the region shaded above.
(c) $\quad f(x)=\frac{1}{\sqrt{x}}$
(i) State the domain and range of $f(x)$.
(ii) For what value of x does $f(x)=2$?
(iii) Find $f^{\prime}(x)$ and hence calculate $f^{\prime}(3)$ leaving your answer in simplified surd form with a rational denominator.
(iv) Show that $(f(x))^{3}=-2 f^{\prime}(x)$.

Question 1
(a)

$$
\begin{aligned}
\text { let } x & =0.8333 \ldots \\
10 x & =8.3333 \ldots \\
\Rightarrow 9 x & =7.5 \\
90 x & =75 \\
x & =\frac{75}{90}=\frac{5}{6}
\end{aligned}
$$

(b)

$$
\begin{aligned}
90 \% & =15660 \text { people } \\
10 \% & =1740 \text { people } \\
100 \% & =17400 \text { people }
\end{aligned}
$$

$\therefore 17400$ attended the previous weekend
(c)

$$
\begin{aligned}
& 3 x^{2}-7 x-6 \\
= & \frac{(3 x-9)(3 x+2)}{3} \\
= & (x-3)(3 x+2)
\end{aligned}
$$

one mare if signs incorrect.
(d)

$$
\begin{aligned}
\cos 225^{\circ} & =-\cos 45^{\circ} \\
& =-1 / \sqrt{2}
\end{aligned}
$$

(e)

$$
\begin{aligned}
v^{2} & =\left(6.4 \times 10^{7}\right)^{2}-2 \times 21.5 \times 5.7 \times 10^{13} \\
& =1.645 \times 10^{15} \\
v & =\sqrt{1.645 \times 10^{15}} \\
& =40558599.58 \\
& \div 40600000 \quad(3 \mathrm{sig} \mathrm{fig})
\end{aligned}
$$

Many students slopped at this point!
many students rounded this to $406!$!
(f)

$$
\begin{aligned}
\frac{3}{\sqrt{5}-2} \times \frac{\sqrt{5}+2}{\sqrt{5}+2} & =\frac{3 \sqrt{5}+6}{5-4} \\
& =\sqrt{45}+6 \\
\therefore a=45, b & =6
\end{aligned}
$$

Question 2
(a) Angle sum $=180 \times(n-2)$

Angle sum of 9 sided shape $=180 \times(9-2)$

$$
=1260^{\circ}
$$

$$
\begin{aligned}
\text { Each angle } & =1260^{\circ} \div 9 \\
& =140^{\circ} .
\end{aligned}
$$

(b) (i)

$$
\begin{gathered}
|2 x-5| \leq 7 \\
-7 \leq 2 x-5 \leq 7 \\
-2 \leq 2 x \leq 12 \\
-1 \leq x \leq 6
\end{gathered}
$$

(ii) $3^{2 x}-10 \times 3^{x}+9=0$
let $u=3^{x}$

$$
\begin{aligned}
& u^{2}-10 u+9=0 \\
& (u-9)(u-1)=0 \\
& u=9, \quad u=1 \\
& 3^{x}=9, \quad 3^{x}=1 \\
& x=2, \quad x=0
\end{aligned}
$$

(c) $\tan \left(\theta+60^{\circ}\right)=\frac{1}{\sqrt{3}}$
$\mathrm{Ne} . L=30^{\circ}$

$$
\theta+60^{\circ}=30^{\circ}, 210^{\circ}, 390^{\circ}
$$

$$
\theta=-30^{\circ}, 150^{\circ}, 330^{\circ}, \ldots
$$

$$
\theta=150^{\circ}, 330^{\circ} \text { for } 0 \leq \theta \leq 360^{\circ}
$$

(d) (i) $\alpha+\beta=\frac{-b}{a}=\frac{-2}{1}=2$
(ii)

$$
\begin{aligned}
& \alpha \beta=\frac{c}{a}=\frac{3}{1}=3 \\
& \alpha^{2} \beta^{2}=9
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\alpha^{-2}+\beta^{-2} & =\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}} \\
& =\frac{\beta^{2}+\alpha^{2}}{\alpha^{2} \beta^{2}} \\
& =\frac{(\alpha+\beta)^{2}-2 \alpha \beta}{\alpha^{2} \beta^{2}} \\
& =\frac{2^{2}-2 \times 3}{9}=\frac{-2}{9}
\end{aligned}
$$

Well done.

Be careful to rewrite Solution

Learn this method
Those students that learnt method were awarded full marks.

Keas 3
Poorly done by most students you needed to - 60 from your solution, Not add to find θ.
Well done (1) $+(11)$

$$
\alpha^{2} \beta^{2} \neq x^{2}+\beta^{2}
$$

Index laws required

$$
x^{-2}=\frac{1}{x^{2}}
$$

Rear 2

Question 3
(a)

$$
\text { (i) } 15 x^{2}-2 x^{-2}
$$

(ii)

$$
x \times 9(2 x+3)^{8} \times 2+(2 x+3)^{9} \times 1
$$

$$
=18 x(2 x+3)^{8}+(2 x+3)^{9} \quad V \downarrow \text { Calc } 4 .
$$

(b)

$$
\begin{aligned}
& y=\frac{x}{x+2} \\
& \frac{d y s}{d x}=\frac{(x+2) \times 1-x \times 1}{(x+2)^{2}} \quad\left(\frac{v u^{\prime}-u v^{\prime}}{v^{2}}\right) \\
&=\frac{2}{(x+2)^{2}} \\
& x=-1 \rightarrow m_{T}=\frac{2}{(-1+2)^{2}}=2 \\
& y=\frac{-1}{-1+2}=-1
\end{aligned}
$$

Equation of tangent:

$$
\begin{gathered}
y--1=2(x--1) \\
y+1=2 x+2 \\
2 x-y+1=0
\end{gathered}
$$

Calc 4
(c) (i) Positive definite $a>0, \Delta<0$.

$$
\begin{aligned}
& \left.\begin{array}{l}
\Delta<0 \\
6^{2}-4 \times k \times k<0 \\
36-4 k^{2}<0 \\
(6-2 h)(6+2 k)<0 \\
k<-3, k>3
\end{array}\right)
\end{aligned}
$$

Since $a>0$ for positive definite

$$
k>3 .
$$

(ii) y int $\rightarrow x=0 \quad y=4$
vertex $\rightarrow x=\frac{-b}{2 a}=\frac{-6}{2 \times 4}=\frac{-3}{4}$

(both labelled on graph)

Question 4
(a) (i) $\angle D A C=\frac{180-80}{2}=50^{\circ}$
(angles opposite equal sides of a triangle are equal and angle sum of triangle is 180°)

$$
\angle D B A=180-60-50=70^{\circ}
$$

(angle sum of $\triangle D A B$ is 180°)
(ii)

$$
\begin{aligned}
& \frac{A B}{\sin 60^{\circ}}=\frac{30}{\sin 70^{\circ}} \\
& \begin{aligned}
A B & =\sin 60^{\circ} \times \frac{30}{\sin 70^{\circ}} \\
& =27.648 \\
& =28 \mathrm{~cm}
\end{aligned}
\end{aligned}
$$

(b) (i) $C: x=0$ in $3 x-4 y+20=0$

$$
\begin{array}{r}
3 \times 0-4 y+20=0 \\
4 y=20 \\
y=5 \\
\therefore c=(0,5)
\end{array}
$$

(ii) Id from $(10,0)$ to $3 x-4 y+20=0$

$$
\begin{aligned}
A B & =\frac{|3 \times 10-4 \times 0+20|}{\sqrt{3^{2}+(-4)^{2}}} \\
& =10 \text { units }
\end{aligned}
$$

(iii) In $\triangle A O C \& \triangle A B C$

$$
\angle A O C=\angle A B C=90^{\circ} \quad(\text { given } A B \perp 1
$$

$A C$ is common

$$
A C=A B=10 \quad\binom{\text { given } A=(10,0)}{2 \quad A B=10 \text { part ii }}
$$

$\therefore \triangle A O C \equiv \triangle A B C$ (RUS) $\quad V \sqrt{ }$
Reas 2.
(iv) Area $=2 \times\left(\frac{1}{2} \times 10 \times 5\right)=50 \mathrm{u}^{2}$
(v) $m_{f}: 3 x-4 y+20=0$

$$
y=\frac{3}{4} x+5
$$

gradient $=3 / 4$

$$
m_{A B}=-4 / 3
$$

$>\tan \theta=-4 / 3$
related angle $=53^{\circ}$

$$
\theta=180-53
$$

$$
=127^{\circ} \checkmark \quad \text { Reas } 3 .
$$

Question 5
(a) $\angle G H E=74^{\circ}$ (corresponding angles are equal when lines are parallel) $x^{\circ}=107^{\circ}-74^{\circ}=33^{\circ}$ (exterior angle of a triangle is the sum of the two opposite interior angles)
(b)

$$
\begin{aligned}
x^{2}-x+3 & \equiv a(x+1)^{2}+b(x+1)+c \\
& \equiv a\left(x^{2}+2 x+1\right)+b x+b+c \\
& \equiv a x^{2}+(2 a+b) x+(a+b+c)
\end{aligned}
$$

Comparing coefficients:

$$
\begin{aligned}
x^{2}: & a=1 \\
x: & 2 a+b=-1 \\
& \Rightarrow b=-3
\end{aligned}
$$

constant: $a+b+c=3 \quad(\& a=1, b=-3)$

$$
\Rightarrow c=5
$$

(c) (i)

$$
\text { LINE }=360-200-120
$$

$$
=40^{\circ}
$$

(ii)

$$
\begin{aligned}
x^{2} & =40^{2}+45^{2}-2 \times 40 \times 45 \times \cos 40 \\
& =867.24 \\
x & =\sqrt{867.24} \div 29 \mathrm{~km}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \times 40 \times 45 \times \sin 40^{\circ} \\
& =578.5088 \cdots \\
& =580 \mathrm{~km}^{2} \quad(2 \text { sig fig })
\end{aligned}
$$

(d) (i)

comm 2.
Correct reason must have been given to be awarded 2 mark.
learn this method.
careless errors made when substitut in.

Advice is to redraw diagram + label information given.
incorrect (1) did not rennet in penalties in part (iI) +(11))
as long as method was correct.

Must have 2 sig fig
label graph (no mark deducheel this time!
Comm 1
Reas 2.
Piecemeal function very poorly done.

Question 6
(a) (i)
(ii)

$$
\begin{aligned}
a^{3}-b^{3} & =(a-b)\left(a^{2}+a b+b^{2}\right) \\
& =\frac{(\sin \theta-\cos \theta)\left(\sin ^{2} \theta+\sin \theta \cos \theta+\cos ^{2} \theta\right.}{(\sin \theta-\cos \theta)} \\
& =\sin ^{2} \theta+\cos ^{2} \theta+\sin \theta \cos \theta-1 \\
& =1+\sin \theta \cos \theta-1 \quad / R \\
& =\sin \theta \cos \theta=\text { RUS } \\
& \text { Keas } 2 .
\end{aligned}
$$

(b) Absolute: $\begin{aligned} & \text { value } \\ & \text { val }\end{aligned} \quad y=|x-2| \quad \sqrt{R}$

Circle :

$$
\begin{aligned}
& \text { radius }=\sqrt{2^{2}+2^{2}}=\sqrt{8} / R \\
& \text { centre }=(2,0) \\
& (x-2)^{2}+y^{2}=8 / R
\end{aligned}
$$

Inequations: $\quad y \geqslant|x-2|$
and $(x-2)^{2}+y^{2} \leq 8 \sqrt{R}$ Reas 4
(c) (i) $D: x>0 \quad R: y>0$
(ii) $f(x)=2$

$$
\begin{aligned}
& \frac{1}{\sqrt{x}}=2 \\
& 1=2 \sqrt{x} \\
& \frac{1}{2}=\sqrt{x} \\
& x=1 / 4
\end{aligned}
$$

(iii)

$$
\begin{array}{rlrl|}
f(x) & =x^{-1 / 2} & f^{\prime}(3) & =\frac{-1}{2 \times 3 \sqrt{3}} \\
f^{\prime}(x) & =-\frac{1}{2} x^{-3 / 2} & \sqrt{c} & \\
& =\frac{-1}{2 x \sqrt{x}} & & =\frac{-\sqrt{3} \sqrt{c}}{18}
\end{array}
$$

$$
L H S=(f(x))^{3}
$$

$$
R H S=-2 \times f^{\prime}(x)
$$

Keas

$$
=\left(\frac{1}{\sqrt{x}}\right)^{3}
$$

$$
=-2 x \frac{-1}{2 x \sqrt{x}}
$$

$$
=\frac{1}{x \sqrt{x}}
$$

$$
\therefore \angle H S=R H S
$$

$$
=\frac{1}{x \sqrt{x}}
$$

setting out often very poor.

