Shore

Year 11
 Mathematics
 Yearly Examination
 September 2014

General Instructions

- Reading time -5 minutes
- Working time -2 hours
- Write using black or blue pen
- Board approved calculators may be used
- Answer Questions $1-10$ on the Multiple Choice answer sheet provided
- Start each of Questions 11 - 14 in a new writing booklet
- In Questions $11-14$, show relevant mathematical reasoning and/or calculations
- Write your examination number on the front cover of each booklet to be handed in
- If you do not attempt a question, submit a blank booklet marked with your examination number and "N/A"

Section I

10 marks
Attempt Questions 1-10
Allow about 10 minutes for this section

Use the multiple choice answer sheet.

[^0](A) $\sqrt[3]{\frac{17}{3}}$
(B) $\sqrt[3]{7}$
(C) $\sqrt[3]{21}$
(D) $\frac{\sqrt[3]{21}}{3}$

2 What is $\frac{\sqrt{3}}{5+2 \sqrt{3}}$ as a fraction with a rational denominator?
(A) $\frac{6+5 \sqrt{3}}{37}$
(B) $\frac{5 \sqrt{3}-6}{37}$
(C) $\frac{6+5 \sqrt{3}}{13}$
(D) $\frac{5 \sqrt{3}-6}{13}$

3 What is the domain and range of the function $y=\sqrt{4-x^{2}}$?
(A) Domain $-2 \leq x \leq 2$, Range $0 \leq y \leq 2$
(B) Domain $-2 \leq x \leq 2$, Range $-2 \leq y \leq 2$
(C) Domain $0 \leq x \leq 2$, Range $-4 \leq y \leq 4$
(D) Domain $0 \leq x \leq 2$, Range $0 \leq y \leq 4$

4 What is the gradient of the normal to the curve $y=\frac{3 x^{2}+2}{x^{2}}$ at $x=2$?
(A) -2
(B) $-\frac{1}{2}$
(C) $\frac{1}{2}$
(D) 2

5 What is the solution of $2^{x+1}=\frac{1}{64}$?
(A) $x=-7$
(B) $x=-5$
(C) $x=5$
(D) $x=7$

6 What is the derivative of $\left(4 x^{2}-5\right)^{3}$?
(A) $3\left(4 x^{2}-5\right)$
(B) $3\left(4 x^{2}-5\right)^{2}$
(C) $24 x\left(4 x^{2}-5\right)^{2}$
(D) $12 x^{2}\left(4 x^{2}-5\right)^{2}$

7 What is the simplified expression for $\frac{x^{3}-1}{x^{2}-1} \times \frac{x^{2}-4 x-5}{4 x^{2}+4 x+4}$?
(A) $\frac{x-5}{4}$
(B) $\frac{x-1}{4}$
(C) $\frac{x+1}{4}$
(D) $\frac{x^{2}+x+1}{4}$

8 What is the solution of the inequality $|3-2 x|<5$?
(A) $x<-4$ or $x>1$
(B) $-4<x<1$
(C) $-1<x<4$
(D) $x<-1$ or $x>4$

9 In the diagram below, $A B$ is parallel to $F D, \angle A B C=100^{\circ}$ and $\angle C E F=130^{\circ}$

What is the value of $\angle B C E$?
(A) 100°
(B) 110°
(C) 120°
(D) 130°

10 Which of the following equations represents this graph?

(A) $y=2^{x}-1$
(B) $y=2^{-x}-1$
(C) $y=1-2^{x}$
(D) $y=1-2^{-x}$

Section II

Total Marks 60

Attempt Questions 11-14

Allow about 1 hour and 50 minutes for this section.

Answer all questions, starting each question in a new answer booklet with your exam number clearly visible. Extra writing booklets are available.

In questions $11-14$, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks)
(a) A retailer marked up the wholesale price of a jacket by 37% before selling it for $\$ 347.98$. Calculate the wholesale price of the jacket to the nearest cent.
(b) Solve $\frac{x-1}{3}-1=\frac{x+2}{2}$.
(c) What angle does the tangent to the curve $y=x^{3}+x^{2}$ at $x=-1$ make with 2 the positive direction of the x-axis?
(d) Find the size of each interior angle of a regular octagon.
(e) Evaluate $\lim _{x \rightarrow \infty} \frac{3 x^{2}-2 x}{3 x-5 x^{2}}$.
(f) Factorise fully $x^{4}-16$. 2

Question 11 (continued)

(g)

In the diagram, $\angle P Q R=\angle S T R$.
(i) Prove that $\triangle P Q R$ is similar to $\triangle S T R$. 2
(ii) Hence find the value of x.

End of Question 11

Question 12 (15 marks) Use a SEPARATE writing booklet

(a) Differentiate $3 x \sqrt{x}$.
(b) If $y=x^{3}-4 x^{2}-5$, for what values of x does $\frac{d y}{d x}=-4$?
(c) A triangle has sides $7 \mathrm{~cm}, 9 \mathrm{~cm}$ and 10 cm .
(i) Find the largest angle of the triangle. Answer to the nearest minute
(ii) Hence, or otherwise, find the area of the triangle correct to two significant figures.
(d) The diagram below shows the points $A(-1,-2), B(3,1)$ and $C(0,4)$

(i) Find the centre and radius of the circle which has $A B$ as diameter.
(ii) Show that the equation of the line through A and B is $3 x-4 y-5=0$.
(iii) Find the perpendicular distance from C to the line $A B$.
(iv) Hence find the area of the triangle $A B C$.

Question 13 (15 marks) Use a SEPARATE writing booklet

(a) If α and β are the roots of $2 x^{2}-3 x-4=0$, find
(i) $\alpha+\beta$
(ii) $\alpha \beta$
(iii) $(\alpha-\beta)^{2} \quad \mathbf{2}$
(b) Solve $2 \sin 2 \theta+\sqrt{3}=0$ for $0^{\circ} \leq \theta \leq 360^{\circ}$.
(c) Solve $|x-3|=3 x+1$.
(d) Find the values of k for which $x^{2}+k x+4 k=0$ has real roots.
(e) Prove that $\frac{1}{\sin ^{2} \theta}+\frac{1}{\cos ^{2} \theta}=\sec ^{2} \theta \operatorname{cosec}^{2} \theta$.

Question 14 (15 marks) Use a SEPARATE writing booklet
(a) Find the equation of the tangent to the curve $y=(3 x+1)(x-2)$ which is parallel
to the line $7 x-y-5=0$.
(b) Differentiate $f(x)=x^{2}-3 x$ from first principles.
(c) If $y=x(2 x-1)^{3}$, find $\frac{d y}{d x}$ in fully factored form.
(d) Given the function $y=\frac{x^{2}}{x+1}$.
(i) Find $\frac{d y}{d x}$.
(ii) Find the values of x for which the tangents to this curve are horizontal.
(e) In triangle $A B C, A D$ bisects $\angle B A C$.

Use the sine rule to prove that $\frac{A B}{A C}=\frac{B D}{D C}$

End of Examination

\because

*

[^0]: 1 If $x=3 y^{3}-2$, what is the value of y when $x=19$?

