

Examination Number:

Set:

Shore

Year 11 Mathematics Yearly Examination September 2014

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen
- Board approved calculators may be used
- Answer Questions 1 10 on the Multiple Choice answer sheet provided
- Start each of Questions 11 14 in a new writing booklet
- In Questions 11 14, show relevant mathematical reasoning and/or calculations
- Write your examination number on the front cover of each booklet to be handed in
- If you do not attempt a question, submit a blank booklet marked with your examination number and "N/A"

Total marks – 70

- Section I Pages 3 7
- 10 marks
- Attempt Questions 1 10
- Each question is worth 1 mark
- Allow about 10 minutes for this section
- Section II Pages 8 12

60 marks

- Attempt Questions 11 14
- Each question is worth 15 marks
- Allow about 1 hour and 50 minutes for this section

Note: Any time you have remaining should be spent revising your answers.

Section I 10 marks Attempt Questions 1 - 10 Allow about 10 minutes for this section

Use the multiple choice answer sheet.

1 If $x = 3y^3 - 2$, what is the value of y when x = 19?

(A) $\sqrt[3]{\frac{17}{3}}$ (B) $\sqrt[3]{7}$ (C) $\sqrt[3]{21}$ (D) $\frac{\sqrt[3]{21}}{3}$

2 What is $\frac{\sqrt{3}}{5+2\sqrt{3}}$ as a fraction with a rational denominator?

(A)
$$\frac{6+5\sqrt{3}}{37}$$

(B) $\frac{5\sqrt{3}-6}{37}$
(C) $\frac{6+5\sqrt{3}}{13}$
(D) $\frac{5\sqrt{3}-6}{37}$

13

DO NOT REMOVE THIS PAPER FROM THE EXAMINATION ROOM

- 3 What is the domain and range of the function $y = \sqrt{4 x^2}$?
- (A) Domain $-2 \le x \le 2$, Range $0 \le y \le 2$
- (B) Domain $-2 \le x \le 2$, Range $-2 \le y \le 2$
- (C) Domain $0 \le x \le 2$, Range $-4 \le y \le 4$
- (D) Domain $0 \le x \le 2$, Range $0 \le y \le 4$

4 What is the gradient of the normal to the curve
$$y = \frac{3x^2 + 2}{x^2}$$
 at $x = 2$?

(B)
$$-\frac{1}{2}$$

(C) $\frac{1}{2}$

(D) 2

5 What is the solution of $2^{x+1} = \frac{1}{64}$?

(A) x = -7

(B) x = -5

- (C) x = 5
- (D) x = 7

- 6 What is the derivative of $(4x^2-5)^3$?
- (A) $3(4x^2-5)$
- (B) $3(4x^2-5)^2$
- (C) $24x(4x^2-5)^2$
- (D) $12x^2(4x^2-5)^2$
- 7 What is the simplified expression for $\frac{x^3-1}{x^2-1} \times \frac{x^2-4x-5}{4x^2+4x+4}$?

(A)
$$\frac{x-5}{4}$$

(B) $\frac{x-1}{4}$
(C) $\frac{x+1}{4}$
(D) $\frac{x^2+x+1}{4}$

8 What is the solution of the inequality |3-2x| < 5?

- (A) x < -4 or x > 1
- (B) -4 < x < 1
- (C) -1 < x < 4
- (D) x < -1 or x > 4

9 In the diagram below, AB is parallel to FD, $\angle ABC = 100^{\circ}$ and $\angle CEF = 130^{\circ}$.

What is the value of $\angle BCE$?

(A) 100°

(B) 110°

(C) 120°

(D) 130°

10 Which of the following equations represents this graph?

 $(A) \quad y = 2^x - 1$

(B) $y = 2^{-x} - 1$

 $(C) \quad y=1-2^x$

(D) $y = 1 - 2^{-x}$

End of Section I

Section II

Total Marks 60 Attempt Questions 11 - 14 Allow about 1 hour and 50 minutes for this section.

Answer all questions, starting each question in a **new answer booklet** with your exam number clearly visible. Extra writing booklets are available.

In questions 11 - 14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks)

(a) A retailer marked up the wholesale price of a jacket by 37% before selling it for \$347.98. Calculate the wholesale price of the jacket to the nearest cent.

2

2

2

2

2

- (b) Solve $\frac{x-1}{3} 1 = \frac{x+2}{2}$.
- (c) What angle does the tangent to the curve $y = x^3 + x^2$ at x = -1 make with the positive direction of the x axis?
- (d) Find the size of each interior angle of a regular octagon.
- (e) Evaluate $\lim_{x\to\infty} \frac{3x^2-2x}{3x-5x^2}$.
- (f) Factorise fully $x^4 16$.

Question 11 (continued)

In the diagram, $\angle PQR = \angle STR$.

(i)	Prove that ΔPQR is similar to ΔSTR .	2
(ii)	Hence find the value of <i>x</i> .	1

End of Question 11

Question 11 continues on the following page

Question 12 (15 marks) Use a SEPARATE writing booklet

(a) Differentiate $3x\sqrt{x}$. 2

3

2

1

(b) If
$$y = x^3 - 4x^2 - 5$$
, for what values of x does $\frac{dy}{dx} = -4$?

- (c) A triangle has sides 7 cm, 9 cm and 10 cm.
 - (i) Find the largest angle of the triangle. Answer to the nearest minute.
 - (ii) Hence, or otherwise, find the area of the triangle correct to two significant figures.
- (d) The diagram below shows the points A(-1,-2), B(3,1) and C(0,4).

(i)	Find the centre and radius of the circle which has AB as diameter.	2
(ii)	Show that the equation of the line through <i>A</i> and <i>B</i> is $3x - 4y - 5 = 0$.	2
(iii)	Find the perpendicular distance from <i>C</i> to the line <i>AB</i> .	2
(iv)	Hence find the area of the triangle <i>ABC</i> .	1

Question 13 (15 marks) Use a SEPARATE writing booklet

(a)	If α and β are the roots of $2x^2 - 3x - 4 = 0$, find		
	(i) $\alpha + \beta$	1	
	(ii) $\alpha\beta$	1	
	(iii) $(\alpha - \beta)^2$	2	
(b)	Solve $2\sin 2\theta + \sqrt{3} = 0$ for $0^\circ \le \theta \le 360^\circ$.	3	
(c)	Solve $ x-3 = 3x+1$.	3	
(d)	Find the values of k for which $x^2 + kx + 4k = 0$ has real roots.	3	
(e)	Prove that $\frac{1}{\sin^2 \theta} + \frac{1}{\cos^2 \theta} = \sec^2 \theta \operatorname{cosec}^2 \theta$.	2	

Question 14 (15 marks) Use a SEPARATE writing booklet

- (a) Find the equation of the tangent to the curve y = (3x+1)(x-2) which is parallel **3** to the line 7x y 5 = 0.
- (b) Differentiate $f(x) = x^2 3x$ from first principles. 3

(c) If
$$y = x(2x-1)^3$$
, find $\frac{dy}{dx}$ in fully factored form. 3

(d) Given the function
$$y = \frac{x^2}{x+1}$$
.
(i) Find $\frac{dy}{dx}$. 2

(ii) Find the values of x for which the tangents to this curve are horizontal.

1

3

(e) In triangle ABC, AD bisects $\angle BAC$.

Use the sine rule to prove that $\frac{AB}{AC} = \frac{BD}{DC}$.

End of Examination

	$\begin{pmatrix} e \\ e $		$\begin{aligned} home &= 1, & n_{e} = 3 - 2 = 1 & (1) & (n & d_{1}, p & A_{e}, 1 T \\ \vdots & t = 0 = 1 \\ \vdots & t = 0 = 1 \\ \vdots & 0 = q T^{o}, & (1) \\ \vdots & 0 = 1 \\ \vdots & 0 = 1 \\ 0 & \vdots & 0 \\ z & 1 \\ z & 1 \\ z & 1 \\ z & 1 \\ z & z \\ z$
YEAR II MATHEMATICI YEARLY EXAM SOLUTIONS	$\frac{p_{1}}{3} = \frac{3}{27}$	3 - 5 + 1/3 - 5 - 2/3 - 2/3 - 2/3 - 2/3 - 2/3 - 2/3 - 2/3 - 2/2	$(4) y = 3 + \frac{2}{\kappa^{1}} = 3 + 2\kappa^{-4}$ $(4) y = 3 + \frac{2}{\kappa^{1}} = 3 + 2\kappa^{-4}$ $(4) y = 3 + \frac{2}{\kappa^{1}} = 3 + 2\kappa^{-4}$ $(6) y = 1 - 2^{6}$ $(6) y = 1 - 2^{6}$ $(6) y = 1 - 2^{6}$ (7) $(9) y = 1 - 1^{6}$ (1) $(2) 2^{2} + 1 = 2^{-6}$ $(2) 2^{2} + 1 = 2^{-6}$ $(3) (4)$

5	$2u^{2}-3u-q=2$ $(u) (u) (u) u^{1} + \frac{1}{2}$ $(i) d+p = -\frac{1}{2} = -\frac{1}{2}$ $(i) (i) (u) (u) (u) (u) (u)$		$ \begin{array}{llllllllllllllllllllllllllllllllllll$	(c) $ n-3 = 3n+1$ n+2k $k=3 = -(3k+1)n+2k$ $k=3k = -(3k+1)n+2k$ $k=3k = -(3k+1)n=2k$ $n=2kn=2k$ $n=2kn=2kn=2k$ $n=2k$
~	(
	$(\mathcal{A}) :) A \mathcal{B} = \sqrt{(31)^{1+} (11)^{1+}}$ $= \sqrt{44 + 3^{1-}}$ $= \sqrt{44 + 3^{1-}}$	143	$\frac{q+r}{krti} = \frac{3}{4}$ $\frac{q+r}{krti} = \frac{3}{4}$ $\frac{qy_{1}g_{2} = 3xr+3}{\frac{3k-4y-5}{2} = 0}$ (1) $\frac{3k-4y-5}{\sqrt{a^{1}+a^{2}}}$ (1) $\frac{1}{\sqrt{a^{1}+a^{2}}}$ (1) $\frac{1}{\sqrt{a^{1}+a^{2}}}$ (1)	$i = \frac{z}{r} u \qquad (i)$ $i = \frac{z}{r} x x \frac{z}{r}$ $= \frac{z}{r} x 5 x \frac{z}{r}$ $= \frac{z}{r}$ $= \frac{z}{r}$ (i)
	611	x 1 0 1 4	(1) $\frac{x=3}{10}$ (1) (2) i) largest angle is opposite longest side (1) (2) $\frac{9}{10}$ (2) $\frac{9}{10}$ (2) $\frac{9}{10}$ (3) $\frac{9}{10}$ (4) (5) $\frac{9}{10}$ (5) $\frac{9}{10}$ (5) $\frac{9}{10}$ (5) $\frac{9}{10}$ (6) $\frac{9}{10}$ (7) $\frac{9}{10}$ (7) $\frac{9}{10}$ (8) $\frac{9}{10}$ (9) $\frac{9}{10}$	= 0.236095236(i) $= 0.236095236(i)$ $= 4.74.5.777031'$ $= 4.779.575$ $= 31.0.177031'$ $= 31.0.177031'$

0 (~)--~ ()----4011 6 40 A 80 PAL = AUMS 12 D R (1) for the role another the there : 1. C = 40 1. 1. B = AC ALS = 140 1m 8 = M C AC = 48 An & An B From (1) mu (1), AB = 111 B = 40 Me (1) for the me one (1) for correct retics er 1- 440, In D ADC 6n 0 ABC (')(r) lue ADB ma " ADC = 100-10. 3 AC INCIPOLA INC 5 J · ntran = 0 .: BD. AC = DC. 40 m(u+v) = 0(ii) he ryme the co · xL+zn =0 (i) du = (n+i). 2n - x 1 ~ x= -2,0 80 = 48 80 AC = 2n - ru - n -In \$460, 80 - 500 B (1) for one rule mee (1) for on (100-A) = the d 80 = DC 40 = 40 (H +1) ~ KL+2H (N+1) J= xr ø In DACD •ł 5 (γ) 3 (\mathbf{E}) 3 S $f'(n) = \int_{\Delta = 0}^{\infty} \left[f(u+h) - f(n) \right]$ (i) $y^{1} = \chi_{c,3}(\lambda_{n-1})^{2} + (\lambda_{n-1})^{2} + (i)$ = (1) = (1+ + + -1) (1) (f)(2) (\mathbf{j}) $(iv) \quad y = (3u+1)(n-1) = 3n^{-1}n(-1)$ - (x - 32) = 2uh tu-3h (1) E1- f cyt: (2,0), m=7 2 2 2 + 244+4 - 3x -3h Arnot of given in = -7 = 7 = 4- [24+4-3] flute) -fla)= n+2nh +h-3n-3h $e b_{\lambda}(u-i)^{L} + (vn-i)^{J}$ flutu)= (ura) - 3 (ura) f(uth)-fin)= 2ut + h-3h (1m-n)~=16-6 1 $y^{-o} = 7 \left(\kappa - 2 \right)$ = 24+4-3 When x=2, y= 7×0=0 6 - 1 = 1 = 7 y = 7k - 14 x (fu-1)(1-4) x We require the IT 6 --= 12 て=2 . = 24-3 (4) f(n)= n-3u 3 = n (2 m -1)³ and = 6x-5 2 (c)