Examination Number
Set:

Section I

10 marks

Attempt Questions 1-10
Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1-10.

2015

Year 11

Preliminary Task 5
Yearly Examination

Mathematics

General Instructions

- Reading time - 5 minutes
- Working time -2 hours
- Write using black or blue pen
- Board approved calculators may be used
- Answer Questions $1-10$ on the Multiple Choice answer sheet provided
- Start each of Questions 11-14 in a new writing booklet
- In Questions $11-14$, show relevant mathematical reasoning and/or calculations
- Write your examination number on the front cover of each booklet to be handed in
- If you do not attempt a question, submit a blank booklet marked with your examination number and "N/A"

Note: Any time you have remaining should be spent revising your answers.

DO NOT REMOVE THIS PAPER FROM THE EXAMINATION ROOM

1 What is the simplified expression of $(x-3)^{2}-4 x(x+5)$?
(A) $-3 x^{2}+20 x-9$
(B) $-3 x^{2}+14 x+9$
(C) $-3 x^{2}-26 x+9$
(D) $-3 x^{2}-20 x-9$

2 A watch sells for $\$ 148.00$, including 10% GST. What is the price before GST is added?
(A) $\$ 13.45$
(B) $\$ 14.80$
(C) $\$ 133.30$
(D) $\$ 134.55$

3 What is the factorised form of $x^{3}-8$?
(A) $(x-2)\left(x^{2}+2 x+4\right)$
(B) $(x-2)\left(x^{2}-2 x+4\right)$
(C) $(x-2)\left(x^{2}+4 x+4\right)$
(D) $(x-2)\left(x^{2}-4 x+4\right)$

- Attempt Questions 11-14
- Allow about 1 hour and 45 minutes for this section
this section

10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section
Section II
Pages 6-11

Total marks - 70

4 What is the correct expression for the value of x ?

(A) $x=\frac{9.8}{\tan 42^{\circ}}$
(B) $\quad x=9.8 \tan 42^{\circ}$
(C) $x=\frac{9.8}{\sin 42^{\circ}}$
(D) $x=9.8 \sin 42^{\circ}$

5 What is the gradient of the tangent to the curve $y=4 x^{2}$ at the point where $x=3$?
(A) $\quad-24$
(B) $-\frac{1}{24}$
(C) 24
(D) $\frac{1}{24}$

6 What is the perpendicular distance between the point $(-3,7)$ and the line $2 x-y+5=0$?
(A) $4 \sqrt{3}$
(B) $\frac{8 \sqrt{5}}{5}$
(C) $\frac{8 \sqrt{3}}{3}$
(D) $\frac{4 \sqrt{58}}{29}$

7 What is the graph of the gradient function for the curve $y=f(x)$?

8 For what values of k will $x^{2}+(k+2) x+4=0$ have no real roots?
(A) $-6 \leq k \leq 2$
(B) $-6<k<2$
(C) $k \leq-6, k \geq 2$
(D) $k<-6, k>2$

9 How many solutions of the equation $\sin (2 x)=0.5$ lie between 0° and 360° ?
(A) 1
(B) 2
(C) 3
(D) 4

10 In the diagram $F D=8 \mathrm{~cm}, G E=15 \mathrm{~cm}$ and $A B=4.8 \mathrm{~cm}$. What is the length of $B C$?

NOT TO SCALE
(A) 2.6 cm
(B) 4.2 cm
(C) 7.2 cm
(D) 9.0 cm

Section II

60 marks

Attempt Questions 11-14

Allow about 1 hour and 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.
In Questions 11-14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet
(a) Evaluate $\sqrt[3]{\frac{7 \pi^{2}}{6}}$ correct to 3 significant figures.
(b) Simplify $\frac{x^{2}-2 x-8}{4 y-12} \times \frac{y^{2}-9}{6 x-24}$.
(c) Solve $|x-8|=3 x-4$.
(d) Express $\frac{5}{\sqrt{3}-1}$ in simplified form with a rational denominator.
(e) State the domain and range for $y=\sqrt{49-x^{2}}$.
(f) The function $g(x)$ is defined as:

$$
g(x)=\left\{\begin{array}{llc}
x^{2} & \text { for } & -5 \leq x \leq 0 \\
x-3 & \text { for } & 0<x<2 \\
5 & \text { for } & x \geq 2
\end{array}\right.
$$

Evaluate $g(-3)-g(2)+g(1)$.
(g) Differentiate $\frac{2 x-1}{3 x+2}$.

Question 12 (15 marks) Use a SEPARATE writing booklet

(a) $A B C D$ is a kite with vertices $A(4,9), B(6,3), C(-2,-3)$ and D. The line $A D$ has equation $x-3 y+23=0$.

(i) Find the distance $B C$.
(ii) Show the equation of diagonal $A C$ is $2 x-y+1=0$
(iii) Given the line $C D$ is parallel to the y-axis, find the coordinates of point D.
(iv) Show that the diagonals of the kite are perpendicular.
(b) Solve $\sqrt{3} \tan \theta=1$ for $0^{\circ} \leq \theta \leq 360^{\circ}$.
(c) The roots of the quadratic equation $3 x^{2}+6 x+k=0$ are α and β.
(i) Find the value of $\alpha+\beta$.

1
(ii) Find the value of k if $\alpha^{2}+\beta^{2}=-6$.

Question 12 (continued)

(d) Two circles have the same centre O. Lines $A C$ and $B D$ intersect at O.

(i) Prove $\triangle A O B \equiv \triangle C O D$. 2
(ii) Hence, or otherwise, show $A B \| C D$.

End of Question 12

Question 12 continues on page 8

Question 13 (15 marks) Use a SEPARATE writing booklet

(a) A function is defined by $f(x)=x^{2}+5 x$
(i) Show that $f(x+h)=x^{2}+2 x h+h^{2}+5 x+5 h$.
(ii) Hence, use the formula $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ to differentiate $f(x)=x^{2}+5 x$ from first principles.
(b) Consider the two equations $y=-x^{2}$ and $x+y+6=0$.
(i) Solve the two equations simultaneously to find their points of intersection.
(ii) Sketch $y=-x^{2}$ and $x+y+6=0$ on the same number plane, labelling $\mathbf{2}$ their points of intersection
(c) Shade the region represented by $x^{2}+y^{2} \leq 25$ and $x<3$

Do not find their points of intersection.
(d) Differentiate $f(x)=5 x^{2}(2 x-1)^{3}$ leaving your answer in fully factorised form.
(e) Find the equation of the normal to the curve $y=x^{3}+5 x^{2}-4$ at the point where $x=1$.

Question 14 (15 marks) Use a SEPARATE writing booklet

(a) Ship A and Ship B leave the same harbour, H. Ship A sails on a bearing of 254° for 170 km . Ship B sails on a bearing of 117° until it is 310 km from ship A.

NOT TO
SCALE

Copy or trace this diagram into your writing booklet
(i) Show that $\angle A H B=137^{\circ}$.
(ii) Hence, or otherwise, find the bearing of Ship A from Ship B. Give your answer correct to the nearest degree
(b) Prove $\frac{(1-\cos \theta)(1+\cos \theta)}{\cos ^{2} \theta}=\tan ^{2} \theta$.
c) $A B C D$ is a rhombus, with $D C$ produced to $E . \angle F B C=39^{\circ}$ and $B C=B E$.

NOT TO
SCALE

Find the value of α giving reasons.

Question 14 continues on page 11

Question 14 (continued)

(d) Solve $9^{x}-6\left(3^{x}\right)-27=0$.
(e) A curve has equation $y=k x^{3}+2$, where k is a constant. At the point where $x=2 \quad 3$ the tangent to the curve is inclined at an angle of 60° with the positive direction of the x-axis. Find the exact value of k.

END OF PAPER

Quezation 11
a) $\sqrt{\frac{7 \pi^{2}}{6}}=2.258129$
b $=2.26$
b) $\frac{x^{2}-2 x-8}{4 y-\frac{y^{2}-9}{}=(x-4)(x+2)} \times \frac{(y-3)(y+3)}{4}$
4y-12 6x-24 $4(y-3) \quad 6(x-4)$
$=\frac{(x+2)(y+3)}{24}$
24
c) $\|x-8\|=3 x-4$
$x-8=3 x-4 \quad x-8=-(3 x-4)$
$-4=2 x-x-8=-3 x+4$
$x=-2 \quad 4 x=12$
$x=3$
tert LHS $=\|-2-8\| \quad \angle H S=\|3-8\|$
$=10=5$
RHS $=3 \times-2-4 \quad$ RHS $=3 \times 3-4$
$=-10 \quad=5$
\therefore not a solution $\quad \therefore$ is a solution
d) $\frac{5}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1}=\frac{5(\sqrt{3}+1)}{(\sqrt{3})^{2}-1^{2}}$
2
e) $y=\sqrt{49-x^{2}}$
domain $x:-7 \leqslant x \leqslant 7$
range $y: 0 \leqslant y \leqslant 7$

Multi Chulce

```
                            (4.1)
Question 12 \(z_{2}^{(2+9)+)_{2}(2+\varepsilon)}=p p(40\)
```


$u=2 x$
$u^{\prime}=2$
3
$\frac{3}{5}$
y_{5}
5

$$
\begin{array}{lll}
\\
\hline
\end{array}
$$

14
Question

