2016

Year 11

Preliminary Task 4

Yearly Examination

Mathematics

General Instructions

- Reading time - 5 minutes

Working time -2 hours

- Write using black pen
- Board approved calculators may be used
- Answer Questions $1-10$ on the Multiple Choice answer sheet provided
- Start each of Questions 11 - 14 in a new writing booklet
- In Questions 11-14, show relevant mathematical reasoning and/or calculations
- Write your examination number on the front cover of each booklet to be handed in
- If you do not attempt a question, submit a blank booklet marked with your examination number and "N/A"
- A BOSTES reference sheet is provided.

Note: Any time you have remaining should be spent revising your answers.

Examination Number:

Set:

Section I

10 marks

Attempt Questions 1-10
Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1-10.

1 What is 0.00412248 written in scientific notation, correct to 4 significant figures?
(A) 4.1225×10^{-2}
(B) 4.122×10^{-2}
(C) 4.1225×10^{-3}
(D) 4.122×10^{-3}

2 Which graph best represents $y=|x-2|$?
(A)

(C)

(B)

(D)

DO NOT REMOVE THIS PAPER FROM THE EXAMINATION ROOM

3 Which of the following is equal to $\frac{1}{2 \sqrt{5}-\sqrt{3}}$?
(A) $\frac{2 \sqrt{5}-\sqrt{3}}{7}$
(B) $\frac{2 \sqrt{5}+\sqrt{3}}{7}$
(C) $\frac{2 \sqrt{5}-\sqrt{3}}{17}$
(D) $\frac{2 \sqrt{5}+\sqrt{3}}{17}$

4 Which inequality defines the domain of the function $f(x)=\frac{1}{\sqrt{x+4}}$?
(A) $x>-4$
(B) $x \geq-4$
(C) $x<-4$
(D) $x \leq-4$

5 What is the gradient of the normal to the curve $y=2 x^{3}$ at the point where $x=2$?
(A) $\quad-24$
(B) $-\frac{1}{24}$
(C) 24
(D) $\frac{1}{24}$

6 Which equation represents the line perpendicular to $2 x-3 y-8=0$, passing through the point $(2,0)$?
(A) $3 x+2 y-4=0$
(B) $3 x+2 y-6=0$
(C) $3 x-2 y+4=0$
(D) $3 x-2 y-6=0$

7 What are the solutions of $2 \cos x=-\sqrt{3}$ for $0^{\circ} \leq x \leq 360^{\circ}$?
(A) $x=30^{\circ}$ and 330°
(B) $x=60^{\circ}$ and 300°
(C) $x=150^{\circ}$ and 210°
(D) $x=120^{\circ}$ and 240°

8 What is the best description of the nature of the roots of $3 x^{2}-7 x+2=0$?
(A) two real, irrational roots
(B) one real, irrational root
(C) two real, rational roots
(D) one real, rational root

9 What is the value of $\lim _{x \rightarrow-2} \frac{x^{2}-4}{x+2}$?
(A) Undefined
(B) $\quad-4$
(C) 0
(D) 4

Which of the following statements is correct?
(A) $\frac{b}{y}=\frac{a}{x}$
(B) $\frac{b}{y}=\frac{x+y}{a}$
(C) $\frac{b}{y}=\frac{x+y}{b}$
(D) $\frac{b}{y}=\frac{a}{b}$

Section II

60 marks

Attempt Questions 11-14

Allow about 1 hour and 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.
In Questions 11-14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet
(a) Solve $7-3 x \geq 22$.
(b) Write, using an algebraic technique, $0.3 \dot{2} \dot{4}$ as a fraction in its simplest terms.
(c) Solve $|x-3|=2 x-4$.
(d) Simplify $\frac{x^{2}-4 x-5}{4 x^{2}+4 x+4} \times \frac{x^{3}-1}{x^{2}-1}$.
(e) On the number plane shade the region defined by $x^{2}+y^{2}<9$ and $y \geq x+3$.
(f) A regular polygon has an interior angle of 171°. How many sides does the polygon have?

Question 12 (15 marks) Use a SEPARATE writing booklet
(a) $\quad A(-8,-3)$ and $B(-2,6)$ are two points on the number plane. The line $A B$ intersects the x-axis at C. The line $C D$ makes an angle of 135° with the positive x-axis. The line $A D$ is parallel to the y-axis.

(i) Given the equation of the line $A B$ is $3 x-2 y+18=0$, find the co-ordinates of C
(ii) Show that the equation of the line $C D$ is $x+y+6=0$.
(iii) Find the co-ordinates of D.
(iv) Find the exact length of $C D$, in its simplest form.
(v) Find the perpendicular distance from B to the line $C D$. $\mathbf{2}$
(vi) Find the area of $\triangle B C D$.
(b) Simplify $\cot \theta-\cot \theta \cos ^{2} \theta$. 2
(c) Show that $f(x)=x^{3}-x$ is an odd function. 2
(d) $A B C D$ is a parallelogram with $\angle D A B=120^{\circ}$. The side $D C$ is produced to E so that $A D=B E$.

(i) Copy or trace the diagram into your writing booklet.
(ii) Prove that $\triangle B C E$ is an equilateral triangle.

End of Question 12

Question 12 continues on page 8

Question 13 (15 marks) Use a SEPARATE writing booklet

(a) If α and β are roots of the equation $2 x^{2}+3 x-4=0$, find the value of
(i) $\alpha+\beta$
(ii) $\alpha \beta$
(iii) $\frac{1}{\alpha}+\frac{1}{\beta}$
(iv) $(\alpha-\beta)^{2}$
(b) Find the values of A, B and C for which $2 x^{2}+3 x+1 \equiv A(x+2)^{2}+B(x+2)+C$.
(c) A ship sails 50 km from Port A to Port B on a bearing of 063° and then sails 130 km from Port B to Port C on a bearing of 296°.

(i) Copy or trace the diagram into your writing booklet showing all the above information
(ii) Show that $\angle A B C=53^{\circ}$
(iii) Find the distance from Port A to Port C. Give you answer correct to the nearest kilometre.
(iv) Find the bearing of Port A from Port C. Give your answer correct to the 2

Question 14 (15 marks) Use a SEPARATE writing booklet

(a) Differentiate the following with respect to x
(i) $y=(3 x+4)^{5}$
(ii) $y=\frac{x^{2}+5}{x-2}$
(b) Differentiate $y=x^{2}(3-2 x)^{4}$ with respect to x. Answer in fully factored form. 3
(c) Find the equation of the tangent to the curve $y=x^{3}+2 x^{2}-5 x$ at the point $(-3,6) . \quad 2$
(d) A function is defined by $f(x)=2 x^{2}+7 x-3$
(i) Show that $f(x+h)=2 x^{2}+4 x h+2 h^{2}+7 x+7 h-3$.
(ii) Hence, differentiate $f(x)=2 x^{2}+7 x-3$ from first principles.
(e) The function $f(x)=\sqrt{4 x-1}$ has a tangent with gradient 2 at point N.
(i) Find the co-ordinates N
(ii) Find the equation of the normal to the curve at N

END OF PAPER

Question 1.4 a) 1) i1) $\begin{aligned} y & =(3 x+4)^{5} \\ \frac{d y}{d x} & =5(3 x+4)^{4} \times 3 \\ & =15(3 x+4)^{4} \end{aligned}$ $\begin{aligned} y & =\frac{x^{2}+5}{x-2} \\ v & =x^{2}+5 \quad v=x-2 \\ \frac{d u}{d x} & =2 x \quad \frac{d v}{d x}=1 \\ \frac{d y}{d x} & =\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v 2} \\ & =\frac{(x-2) 2 x-\left(x^{2}+5\right) \times 1}{(x-2)^{2}} \\ & =\frac{2 x^{2}-4 x-x^{2}-5}{(x-2)^{2}} \\ & =\frac{x^{2}-4 x-5}{(x-2)^{2}} \\ & =\frac{(x-5)(x+1)}{(x-2)^{2}} \end{aligned}$ b) $y=x^{2}(3-2 x)^{4}$ $\begin{array}{rlrl} u=x^{2} & v & =(3-2 x)^{4} \\ \frac{d u}{d x}=2 x & \frac{d v}{d x} & =4(3-2 x)^{3} \times-2 \\ & =-8(3-2 x)^{3} \end{array}$ $\begin{aligned} \frac{d y}{d x} & =v \frac{d u}{d x}+u \frac{d v}{d x} \\ & =(3-2 x)^{4} \times 2 x+x^{2} \times-8(3-2 x)^{3} \\ & =2 x(3-2 x)^{4}-8 x^{2}(3-2 x)^{3} \\ & =2 x(3-2 x)^{3}[3-2 x-4 x] \\ & =2 x(3-2 x)^{3}(3-6 x) \\ & =6 x(3-2 x)^{3}(1-2 x) \end{aligned}$	$\text { c) } \begin{aligned} y & =x^{3}+2 x^{2}-5 x \\ \frac{d y}{d x} & =3 x^{2}+4 x-5 \text { at } x=-3 \\ & =3(-3)^{2}+4(-3)-5 \\ & =27-12-5 \\ & =10 \\ y-y_{1} & =m\left(x-x_{1}\right) \\ y-6 & =10(x--3) \\ y-6 & =10 x+30 \\ y & =10 x+36 \end{aligned}$ d) $\text { d) } \begin{aligned} f(x) & =2 x^{2}+7 x-3 \\ \text { 1) } f(x+h) & =2(x+h)^{2}+7(x+h)-3 \\ & =2\left(x^{2}+2 x h+h^{2}\right)+7 x+7 h-3 \\ & =2 x^{2}+4 x h+2 h^{2}+7 x+7 h-3 \end{aligned}$ $\text { 1) } \begin{aligned} f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\ & =\lim _{h \rightarrow 0} \frac{2 x^{2}+4 x h+2 h^{2}+7 x+7 h-3-2 x^{2}-7 x+3}{} \\ = & \lim _{h \rightarrow 0} \frac{4 x h+2 h^{2}+7 h}{h} \\ & =\lim _{h \rightarrow 0} \frac{h(4 x+2 h+7)}{h} \\ & =\lim _{h \rightarrow 0} 4 x+2 h+7 \\ \therefore f^{\prime}(x) & =4 x+7 \end{aligned}$

