SHORE

Examination Number:
Set:

Year 11

Mathematics

Preliminary Task 4

Yearly Examination

September 2017

General instructions

- Reading time - 5 minutes
- Working time -2 hours
- Write using black pen
- NESA-approved calculators may be used
- In Questions 11-14, show relevant mathematical reasoning and/or calculations
- Write your examination number on the front cover of each booklet to be handed in
- If you do not attempt a question, submit a blank booklet marked with your examination number and "N/A"
- A NESA Reference Sheet is provided

Total marks - 70

Section I

Pages 2-5

10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II Pages 6-10

60 marks

- Attempt Questions 11-14
- Allow about 1 hour and 45 minutes for this section

Note: Any time you have remaining should be spent revising your answers.
DO NOT REMOVE THIS PAPER FROM THE EXAMINATION ROOM

Section I

10 marks

Attempt Questions 1-10
Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions $1-10$.
1 Which test would prove $\triangle A B C \equiv \triangle D E C$?

(A) SSS
(B) AAS
(C) RHS
(D) SAS

2 A function has $f^{\prime}(x)<0$ and $f^{\prime \prime}(x)>0$ for all values of x.
Which of the following could be the graph of $y=f(x)$?
(A)

(B)

(C)

(D)

3 Which of the following is equivalent to $(x-3)(x+6)-(x-3)(x+3)$?
(A) $3 x-9$
(B) $9 x-9$
(C) $3 x-27$
(D) $9 x-27$

4 What is the solution to $2 x^{2}-x-6>0$?
(A) $x>-\frac{3}{2}, x>2$
(B) $-\frac{3}{2}<x<2$
(C) $x<-\frac{3}{2}, x>2$
(D) $-\frac{3}{2}>x>2$

5 What could be the equation of the exponential graph shown?

NOT TO
SCALE
(A) $y=-3^{x}-2$
(B) $y=-2^{x}-3$
(C) $y=2^{-x}-3$
(D) $y=3^{-x}-2$

6 What is the derivative of $\left(5 x^{3}+1\right)^{4}$?
(A) $4\left(5 x^{3}+1\right)^{3}$
(B) $\quad 20\left(5 x^{3}+1\right)^{3}$
(C) $60 x^{2}\left(5 x^{3}+1\right)^{3}$
(D) $60 x^{3}\left(5 x^{3}+1\right)^{3}$

7 What is the perpendicular distance from the point $(2,-5)$ to the line $6 x+3 y-7=0$ in simplest surd form?
(A) $\frac{2 \sqrt{45}}{9}$
(B) $\frac{2 \sqrt{5}}{3}$
(C) $2 \sqrt{5}$
(D) $\frac{10}{\sqrt{45}}$

8 In the diagram $A B=A C$ and $D E \| B C$.

What is the size of $\angle B A D$?
(A) 17°
(B) 27°
(C) 34°
(D) 44°

9 What is the best description of the function $x^{2}+4 x-3$?
(A) Positive definite
(B) Negative definite
(C) Positive indefinite
(D) Negative indefinite

10 How many solutions of the equation $(\cos 2 x-1)(\sin x+1)=0$ lie in the domain $0^{\circ} \leq x \leq 360^{\circ}$?
(A) 3
(B) 4
(C) 5
(D) 6

Section II

60 marks

Attempt Questions 11-14
Allow about 1 hour and 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.
In Questions 11-14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet
(a) Evaluate $\sqrt{\frac{3 \pi^{2}+2}{5.2 \times 4.8}}$ correct to 2 significant figures.
(b) Solve $|3 x-2| \leq 13$.
(c) Fully factorise:
(i) $2 x^{3}-54 \quad 1$
(ii) $3 x^{3}+5 x^{2}-12 x-20$

2
(d) Differentiate $4 x^{-2}$.
(e) If $\cos \alpha=\frac{3}{4}$ and $\tan \alpha<0$, find the exact value of $\sin \alpha$.
(f) Simplify $\frac{3}{x-2}+\frac{1}{x}$.
(g) Express $\frac{\sqrt{3}}{\sqrt{7}-2}$ with a rational denominator.
(h) Solve $\sqrt{3} \tan \theta=1$ for $0 \leq \theta \leq 360^{\circ}$.

Question 12 (15 marks) Use a SEPARATE writing booklet
(a) The diagram shows the points $A(-7,0), B(-1,2)$ and $C(5,4)$.

NOT TO
SCALE
(i) Find the gradient of line $B C$
(ii) Find the coordinates of M, the midpoint of $B C$.
(iii) Show that the equation of the perpendicular bisector of interval $B C$ is $3 x+y-9=0$.
(iv) The perpendicular bisector of $B C$ meets the x-axis at D.

Find the coordinates of D.
(v) Hence, or otherwise, find the area of $\triangle A B D$.
(b) Show that $\tan \theta-\sin \theta \cos \theta=\frac{\sin ^{3} \theta}{\cos \theta}$.
(c) A function is defined as $f(x)=\frac{x^{4}-1}{x}$.
(i) Evaluate $f(-2)$.
(ii) Determine if the function $f(x)$ is odd, even or neither.
(d) In the diagram $P Q R S$ is a rectangle and $S R=3 P S . R, Q$ and Y are collinear points. $X Q=6 \mathrm{~cm}$ and $Y Q=8 \mathrm{~cm}$.

NOT TO SCALE
(i) Prove $\triangle Y Q X|\mid \triangle Y R S$. 2
(ii) Hence, find the length of $P S$.

End of Question 12.

Question 13 (15 marks) Use a SEPARATE writing booklet
(a) The roots of the equation $2 x^{2}+5 x+3=0$ are α and β.
(i) Find $\alpha+\beta$. 1
(ii) Find $\alpha \beta$. 1
(iii) Find $\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}$.
(b) Differentiate:
(i) $\frac{2}{\sqrt{x}}$
(ii) $\frac{2 x+1}{x-3}$
(iii) $3 x^{2}\left(x^{3}-7\right)^{5}$
(c) Find the equation of the tangent to the curve $y=4 x^{2}+6 x-5$ at the point $(-3,13)$.
(d) A park is bordered by three straight roads, $A C, C B$, and $B A$. The road $A C$ runs due North.

Copy or trace the diagram into your writing booklet.
(i) Calculate the bearing of B from C, correct to the nearest degree.
(ii) Calculate the area of the park, correct to one decimal place.

Question 14 (15 marks) Use a SEPARATE writing booklet
(a) Express $3 x^{2}-5 x$ in the form $A(x-3)^{2}+B(x+1)+C$, for integer values A, B and $C .3$
(b) Consider the function $f(x)=x^{3}+2 x^{2}-15 x$.
(i) Find the coordinates of the points where the curve crosses the axes.
(ii) Find any stationary points on $y=f(x)$ and determine their nature.
(iii) Sketch the curve labelling all features identified above.
(iv) Hence, or otherwise, determine the values of x for which $y=f(x)$ is increasing. 1
(c) A circle has equation $(x-2)^{2}+y^{2}=20$.
(i) Show that where the line $y=2 x+k$ intersects the circle is given by $5 x^{2}+(4 k-4) x+k^{2}-16=0$.
(ii) Find the values of k for which the line $y=2 x+k$ is a tangent to the circle.

BLANK PAGE

BLANK PAGE

