

STUDENT NUMBER/NAME

St Aloysius' College Year 11 Preliminary Examination 2014

MATHEMATICS (2 Unit)

Reading time – 5 minutes

Working time – 2 hours

- Write using black or blue pen only with diagrams in pencil
- Board approved calculators may be used
- Examination papers must NOT be removed from the examination room
- Attempt all questions

Total marks: 70

Section I:

- 10 objective response questions worth 1 mark each.
- Give your answers on the Section I answer sheet.
- Only the letter will be considered for marking.

Section II:

- 4 questions worth 15 marks each consisting of shorter part-questions.
- Attempt all questions.
- Marks for each part are shown in the margin.
- Hand in a booklet for each question, even if not attempted.
- If a second booklet is used place it inside the first.

Section I Attempt Questions 1 – 10 Allow about 15 minutes for this section

10 marks

Use the multiple-choice answer sheet for Questions 1 - 10.

1. Which of the following graphs is NOT a function?

2. What are the domain and range of the function:

$$f(x) = \frac{7}{2x - 8}$$

- (A) Domain: $\{ all real x : x \neq 8 \}$ Range: $\{ all real y \}$
- (B) Domain: $\{ all real x : x \neq 4 \}$ Range: $\{ all real y \}$
- (C) Domain: $\{x = 4\}$ Range: $\{\text{all real } y : y \neq 0\}$
- (D) Domain: $\{ all real x : x \neq 4 \}$ Range: $\{ all real y : y \neq 0 \}$

3. Solve
$$\cos \theta = -\frac{\sqrt{3}}{2}, 0 \le \theta \le 360^\circ$$
.

- (A) $\theta = 210^\circ, 330^\circ$
- (B) $\theta = 150^\circ, 330^\circ$
- (C) $\theta = 150^{\circ}, 210^{\circ}$
- (D) $\theta = 150^{\circ}, 210^{\circ}, 330^{\circ}$

4. Simplify
$$\lim_{h \to 0} \frac{2(x+h)^2 - 2x^2}{h}$$

- (A) 4*h*
- (B) 4xh + 4h
- (C) 4x + 4h
- (D) 4*x*
- 5. The line *l* is tangent to the curve $y = 3x^2$ at the point (3, 27). What is the gradient of the line *l*?
 - (A) m = 27
 - (B) m = 18
 - (C) m = 432
 - (D) *m* = 72

6. Given that $f(x) = ax^2$, solve f'(x) = f(x).

- (A) x = -2(B) x = 0, 2(C) x = -2, 0
- (D) x = 2

7. What is the exact value of $\sin 240^{\circ}$?

(A) $-\frac{1}{2}$ (B) $\frac{1}{2}$ (C) $-\frac{\sqrt{3}}{2}$ (D) $\frac{\sqrt{3}}{2}$

- 8. Two points *A* and *B* lie on opposite sides of the line *l*. *A* and *B* are equidistant from the line *l*. Which statement is always true?
 - (A) The line through A and B is perpendicular to the line l.
 - (B) The line through A and B is parallel to the line l.
 - (C) The midpoint of *AB* lies on the line *l*.
 - (D) If a line passing through *A* is parallel to a line passing through *B*, both these lines are parallel to the line *l*.
- 9. Write the following expression in simplest form, using no negative indices.

$$\frac{(8x)^{-1}}{2^{-6}}$$
(A) $\frac{8}{x}$
(B) $\frac{512}{x}$
(C) $\frac{1}{8x}$
(D) $\frac{1}{512x}$

10. Calculate the value of *x*. All measurements are in cm.

Section II

60 marks Attempt Questions 11 – 14 Allow about 1 hour and 45 minutes for this section

In Questions 11 - 14, your responses should include relevant mathematical reasoning and/or calculations

Question 11 (15 marks) Use a new answer booklet

(a)	Evaluate $\sqrt{3.56^2 + (7.06 - 2.01)^2}$ correct to 2 decimal places.	1
(b)	Expand and simplify $3(4x - 7)^2 - (12x - 8x^2)$.	2
(c)	Rationalise the denominator of the expression $\frac{3\sqrt{7}}{\sqrt{7}-2}$.	2
(d)	Simplify $\log_{10} 10 + \log_{12} 2 + \log_{12} 6$	2
(e)	Evaluate $(3.42 \times 10^{12}) \div (6.79 \times 10^{14})$, expressing your answer in scientific notation correct to 3 significant figures.	2
(f)	Find the exact distance between the points $A(-3, 2)$ and $B(5, -2)$, expressing your answer in simplest form.	2
(g)	Show that the function $f(x) = 3x^5 + 2x$ is an odd function.	2
(h)	Find the centre and the radius of the circle with equation $x^{2} + 4x + y^{2} - 2y - 11 = 0$.	2

End of Question 11

1

1

3

2

Question 12 (15 marks) Use a new answer booklet

(a) Solve the following equation:
$$3^{x-1} = \frac{3}{\sqrt{27}}$$
 2

(b) The diagram shows the flight path of a plane. The plane flies from Town A to Town *B* on a bearing of 230° . The distance between the two towns is 250 km. The plane leaves Town B and flies on a bearing of 080° to Town C, which is due east of Town A.

- (i) Show that $\angle BAC = 140^{\circ}$.
- Find $\angle ABC$. (ii)
- (iii) If the plane flies at an average speed of 180 km/h, how long will it take to fly from Town C to Town A? Answer to the nearest hour

(c) Factorise fully:
$$8x^3 - 512b^3$$

(d) A function is defined by the rule:
$$f(x) = \begin{cases} x-3 & x \le -3\\ 2x+2 & -3 < x < 0\\ x^2 & x \ge 0 \end{cases}$$

(i) find: f(-5) + f(-2) + f(2)1 find: $f(p^2)$ (ii) 1 2

٢

Sketch the above function (iii)

(e) Solve for *x*,
$$\log_7\left(\frac{x-4}{x-1}\right) = 2$$
 2

End of Question 12

1

1

3

Question 13 (15 marks) Use a new answer booklet

(a) Differentiate the following functions with respect to x

(i)
$$f(x) = 5x^4 - 3x^2 + 3$$
 1

(ii)
$$f(x) = -x^{\frac{3}{2}}$$
 1

(iii)
$$f(x) = x\sqrt{x-2}$$

(iv)
$$f(x) = (x+2)^3(2x+1)$$
 3

- (b) (i) Find the angle sum of a pentagon.
 - (ii) The diagram shows a pentagon *ABCDE*. AB = AE and BC = CD = DE. Find the value of *a*.

- (iii) In the above diagram, BC = CD = (x + 1) cm and $BD = \sqrt{15}$ cm. 3 Find the value of x.
- (c) Shade the region bounded by the intersection

$$y \le \frac{1}{2}x^2 - 2$$
 and $y \le \frac{1}{2}x + 1$.

End of Question 13

Question 14 (15 marks) Use a new answer booklet

(a) (i) Given
$$y = \frac{x^2 + 2x - 8}{x^2 + 4x}$$
, use algebra to simplify the equation and 2
then show that: $\frac{dy}{dx} = \frac{2}{x^2}$

- (ii) Find the gradient and angle of inclination of the curve in part (a) (i) 2 above when x = 3. Give your answer to the nearest minute.
- (iii) Find the equation of the normal to the curve in part (a) (i) **3** above when x = 3.
- (b) The diagram shows the rhombus *OABC*. The diagonals *OB* and *AC* intersect at the point *D*. The diagonal *OB* makes an angle of 30° with the positive *x*-axis. The length of *OD* is 2 units. *DE* is perpendicular to the *x*-axis at the point *E*.

- (i) By considering the triangle *ODE*, or otherwise, show that the coordinates of the point *D* are $(\sqrt{3}, 1)$. **1**
- (ii) Show that the coordinates of the point *C* are $\left(\frac{4\sqrt{3}}{3}, 0\right)$ 2

3

(iv) Find the equation of the line *BC*.

End of Examination