

## St Aloysius' College

## Year 11 Preliminary Examination

## 2014

## MATHEMATICS (2 Unit)

## General Instructions

Reading time - 5 minutes
Working time -2 hours

- Write using black or blue pen only with diagrams in pencil
- Board approved calculators may be used
- Examination papers must NOT be removed from the examination room
- Attempt all questions

Total marks: 70

## Section I:

- 10 objective response questions worth 1 mark each.
- Give your answers on the Section I answer sheet.
- Only the letter will be considered for marking.


## Section II:

- 4 questions worth 15 marks each consisting of shorter part-questions.
- Attempt all questions.
- Marks for each part are shown in the margin.
- Hand in a booklet for each question, even if not attempted.
- If a second booklet is used place it inside the first.


## Section I

Attempt Questions 1 - 10
Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1 - 10 .

1. Which of the following graphs is NOT a function?
(A)

(B)

(C)

(D)

2. What are the domain and range of the function:
$f(x)=\frac{7}{2 x-8}$
(A) Domain: $\{$ all real $x: x \neq 8\}$

Range: \{all real $y$ \}
(B) Domain: $\{$ all real $x: x \neq 4\}$

Range: \{all real $y$ \}
(C) Domain: $\{x=4\}$

Range: $\{$ all real $y: y \neq 0\}$
(D) Domain: $\{$ all real $x: x \neq 4\}$

Range: $\{$ all real $y: y \neq 0\}$
3. Solve $\cos \theta=-\frac{\sqrt{3}}{2}, 0 \leq \theta \leq 360^{\circ}$.
(A) $\theta=210^{\circ}, 330^{\circ}$
(B) $\theta=150^{\circ}, 330^{\circ}$
(C) $\quad \theta=150^{\circ}, 210^{\circ}$
(D) $\theta=150^{\circ}, 210^{\circ}, 330^{\circ}$
4. Simplify $\lim _{h \rightarrow 0} \frac{2(x+h)^{2}-2 x^{2}}{h}$
(A) $4 h$
(B) $4 x h+4 h$
(C) $4 x+4 h$
(D) $4 x$
5. The line $l$ is tangent to the curve $y=3 x^{2}$ at the point ( 3,27 ).

What is the gradient of the line $l$ ?
(A) $m=27$
(B) $m=18$
(C) $m=432$
(D) $m=72$
6. $\quad$ Given that $f(x)=a x^{2}$, solve $f^{\prime}(x)=f(x)$.
(A) $x=-2$
(B) $x=0,2$
(C) $x=-2,0$
(D) $x=2$
7. What is the exact value of $\sin 240^{\circ}$ ?
(A) $-\frac{1}{2}$
(B) $\frac{1}{2}$
(C) $-\frac{\sqrt{3}}{2}$
(D) $\frac{\sqrt{3}}{2}$
8. Two points $A$ and $B$ lie on opposite sides of the line $l$. $A$ and $B$ are equidistant from the line $l$. Which statement is always true?
(A) The line through $A$ and $B$ is perpendicular to the line $l$.
(B) The line through $A$ and $B$ is parallel to the line $l$.
(C) The midpoint of $A B$ lies on the line $l$.
(D) If a line passing through $A$ is parallel to a line passing through $B$, both these lines are parallel to the line $l$.
9. Write the following expression in simplest form, using no negative indices.
$\frac{(8 x)^{-1}}{2^{-6}}$
(A) $\frac{8}{x}$
(B) $\frac{512}{x}$
(C) $\frac{1}{8 x}$
(D) $\frac{1}{512 x}$
10. Calculate the value of $x$. All measurements are in cm .

(A) 2.5 cm
(B) 6.3 cm
(C) 4.9 cm
(D) 3.2 cm

## Section II

## 60 marks

Attempt Questions 11 - 14
Allow about 1 hour and 45 minutes for this section

In Questions 11 - 14, your responses should include relevant mathematical reasoning and/or calculations

Question 11 (15 marks) Use a new answer booklet
(a) Evaluate $\sqrt{3.56^{2}+(7.06-2.01)^{2}}$ correct to 2 decimal places.
(b) Expand and simplify $3(4 x-7)^{2}-\left(12 x-8 x^{2}\right)$.
(c) Rationalise the denominator of the expression $\frac{3 \sqrt{7}}{\sqrt{7}-2}$.
(d) Simplify $\log _{10} 10+\log _{12} 2+\log _{12} 6$
(e) Evaluate $\left(3.42 \times 10^{12}\right) \div\left(6.79 \times 10^{14}\right)$, expressing your answer in scientific notation correct to 3 significant figures.
(f) Find the exact distance between the points $A(-3,2)$ and $B(5,-2)$, expressing your answer in simplest form.
(g) Show that the function $f(x)=3 x^{5}+2 x$ is an odd function.
(h) Find the centre and the radius of the circle with equation

$$
\begin{equation*}
x^{2}+4 x+y^{2}-2 y-11=0 \tag{2}
\end{equation*}
$$

## End of Question 11

Question 12 (15 marks) Use a new answer booklet
(a) Solve the following equation: $3^{x-1}=\frac{3}{\sqrt{27}}$
(b) The diagram shows the flight path of a plane. The plane flies from Town $A$ to Town $B$ on a bearing of $230^{\circ}$. The distance between the two towns is 250 km . The plane leaves Town $B$ and flies on a bearing of $080^{\circ}$ to Town $C$, which is due east of Town $A$.

(i) Show that $\angle B A C=140^{\circ}$.
(ii) Find $\angle A B C$.
(iii) If the plane flies at an average speed of $180 \mathrm{~km} / \mathrm{h}$, how long will it take to fly from Town $C$ to Town A? Answer to the nearest hour
(c) Factorise fully: $8 x^{3}-512 b^{3}$
(d) A function is defined by the rule: $f(x)= \begin{cases}x-3 & x \leq-3 \\ 2 x+2 & -3<x<0 \\ x^{2} & x \geq 0\end{cases}$
(i) find: $f(-5)+f(-2)+f(2)$
(ii) find: $f\left(p^{2}\right)$ 1
(iii) Sketch the above function
(e) Solve for $x, \quad \log _{7}\left(\frac{x-4}{x-1}\right)=2$

Question 13 (15 marks) Use a new answer booklet
(a) Differentiate the following functions with respect to $x$
(i) $f(x)=5 x^{4}-3 x^{2}+3$
(ii) $f(x)=-x^{\frac{3}{2}}$
(iii) $f(x)=x \sqrt{x-2}$
(iv) $\quad f(x)=(x+2)^{3}(2 x+1)$
(b) (i) Find the angle sum of a pentagon.
(ii) The diagram shows a pentagon $A B C D E . A B=A E$ and $B C=C D=D E$. Find the value of $a$.

1

(iii) In the above diagram, $B C=C D=(x+1) \mathrm{cm}$ and $B D=\sqrt{15} \mathrm{~cm}$.

Find the value of $x$.
(c) Shade the region bounded by the intersection

$$
y \leq \frac{1}{2} x^{2}-2 \text { and } y \leq \frac{1}{2} x+1
$$

## End of Question 13

Question 14 (15 marks) Use a new answer booklet
(a) (i) Given $y=\frac{x^{2}+2 x-8}{x^{2}+4 x}$, use algebra to simplify the equation and then show that: $\frac{d y}{d x}=\frac{2}{x^{2}}$
(ii) Find the gradient and angle of inclination of the curve in part (a) (i) above when $x=3$. Give your answer to the nearest minute.
(iii) Find the equation of the normal to the curve in part (a) (i) above when $x=3$.
(b) The diagram shows the rhombus $O A B C$. The diagonals $O B$ and $A C$ intersect at the point $D$. The diagonal $O B$ makes an angle of $30^{\circ}$ with the positive $x$-axis. The length of $O D$ is 2 units. $D E$ is perpendicular to the $x$-axis at the point $E$.

(i) By considering the triangle $O D E$, or otherwise, show that the coordinates of the point $D$ are $(\sqrt{3}, 1)$.
(ii) Show that the coordinates of the point $C$ are $\left(\frac{4 \sqrt{3}}{3}, 0\right)$
(iii) Find, in exact form, the coordinates of the point $A$.
(iv) Find the equation of the line $B C$.

## End of Examination

