STUDENT NUMBER/NAME

St Aloysius' College

Year 11 Preliminary Examination

2015

MATHEMATICS (2 Unit)

General Instructions

Reading time - 5 minutes

Working time - 2 hours

- Write using black or blue pen only with diagrams in pencil
- Board approved calculators may be used
- Examination papers must NOT be removed from the examination room
- Attempt all questions

Total marks: 70

Section I:

- 10 objective response questions worth 1 mark each.
- Give your answers on the Section I answer sheet.
- Only the letter will be considered for marking.

Section II:

- 4 questions worth 15 marks each consisting of shorter part-questions.
- Attempt all questions.
- Marks for each part are shown in the margin.
- Hand in a booklet for each question, even if not attempted.
- If a second booklet is used place it inside the first.

Section I

10 marks

Attempt Questions 1 - 10.

Allow about 15 minutes for this section.

Use the multiple-choice answer sheet for Questions 1-10.

1. Given that $m=(\sqrt{5}-\sqrt{3})^{2}+\sqrt{60}$, find m in simplest form.
(A) 8
(B) 24
(C) $8-4 \sqrt{15}$
(D) $24-4 \sqrt{15}$
2. A function is defined by the rule:

$$
f(x)= \begin{cases}0 & x \leq-3 \\ -1 & -3<x<0 \\ x & x \geq 0\end{cases}
$$

Find $f(-3)+f(-2)+f(2)$
(A) -3
(B) -1
(C) 1
(D) 3
3. If the straight lines $2 x+3 y=4$ and $x+a y=7$ are perpendicular, find the value of a.
(A) $-\frac{3}{2}$
(B) $-\frac{2}{3}$
(C) $\frac{2}{3}$
(D) $\frac{3}{2}$
4. Which of the following graphs best represents the function $y=|x+1|$.
(A)

(B)

(C)

(D)

5. If $\frac{1}{a}=\frac{1}{b}+\frac{1}{c}$, find the value of a (to 3 decimal places) when $b=2.08$ and $c=6.45$.
(A) 0.635
(B) 0.636
(C) 1.572
(D) 1.573
6. Differentiate $y=15 \sqrt[5]{x}$.
(A) $15 x^{-\frac{4}{5}}$
(B) $3 \sqrt[5]{x^{4}}$
(C) $75 \sqrt[5]{x}$
(D) $\frac{3}{\sqrt[5]{x^{4}}}$
7. Simplify $\cos A(\sec A+\tan A)$
(A) $1+\cos A$
(B) $1+\sin A$
(C) $1+\tan A$
(D) $\sin A$
8. The quadrilateral $P Q R S$ is a rhombus. Consider these two statements.
(I) Sides $P Q$ and $Q R$ are equal.
(II) The diagonals $P R$ and $Q S$ bisect each other.

Which of the following best describes statement (I) and (II)?
(A) Both statements are correct.
(B) Only statement I is correct.
(C) Only statement II is correct.
(D) Both statements are incorrect.
9. Solve $|3 x-1|=4 x+2$.
(A) No solution
(B) $x=-3$
(C) $x=-\frac{1}{7}$
(D) $x=-3$ and $x=-\frac{1}{7}$
10. The line $y=5 x-1$ is tangent to the curve $y=x^{2}+3 x$ at the point A.

Find the coordinates of A.
(A) $\quad(-2,-2)$
(B) $(-1.5,-2.25)$
(C) $(1,4)$
(D) $(0,0)$

End of Section I

Section II

60 marks

Attempt Questions 11-14.

Allow about 1 hour and 45 minutes for this section.

Answer each question in a separate writing booklet.
In Questions 11 - 14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks)

(a) The fuel tank on my new car was 40% full. I added 28 litres and then found it was 75% full. How much fuel does the tank hold?
(b) Evaluate $\sqrt{\frac{6.749 \times(3.22)^{2}}{17.413}}$ correct to 3 significant figures.
(c) Solve $\frac{3 x-2}{5}=\frac{x}{4}+3$.
(d) Find the exact value of $t^{3}-2 t^{2}+2 t+1$ when $t=2 \sqrt{3}$.
(e) Express $\frac{x+1}{x^{2}-x}-\frac{x-1}{x^{2}+x}$ as a single fraction in its lowest form.
(f) Solve $2 \sin ^{2} \theta-1=0$ for $0^{\circ} \leq \theta \leq 360^{\circ}$.
(g) Prove that $\frac{1}{\sin ^{2} \theta}+\frac{1}{\cos ^{2} \theta}=\sec ^{2} \theta \operatorname{cosec}^{2} \theta$.

End of Question 11

Question 12 (15 marks) Start a new booklet
(a) The vertices of a triangle are $A(1,4)$ and $B(-1,0)$ and C, where C lies on the x-axis and $\angle A B C=\angle A C B=\alpha$.

(i) Find the coordinates of the midpoint of $A B$.
(ii) Show that $\tan \alpha=2$.
(iii) Show that $A B$ has equation $y=2 x+2$.
(iv) Explain why $A C$ has a gradient of -2 , and hence find its equation in general form.
(v) Find the coordinates of C and hence the area of $\triangle A B C$.
(vi) Find the length of $A C$ and the perpendicular distance from B to $A C$.
(b) State the range of $y=1-2 x^{2}$.

Question 12 continues on the next page

Question 12 Continued
(c) Differentiate the following with respect to x
(i) $3 x^{2}-5 x+4$ 1
(ii) $(5 x+2)^{4}$ 1(iii) $3 x^{2}\left(3 x^{4}-x\right)$
End of Question 12

Question 13 (15 marks) Start a new booklet
(a) Two ships sail from the town of Posthawk (P). The ship Longview (L) sails on a bearing of 118° and the ship Quest (Q) on a bearing of 276°. Both ships sailed for 3 hours, the Longview at a speed of 8 knots and the Quest at a speed of 12 knots.
(1 knot = 1 nautical mile per hour)
(i) Draw a diagram to show the distance and direction of the two ships from P after 3 hours.
(ii) Find the distance, in nautical miles, between the 2 ships after 3 hours.
(Answer correct to 1 decimal place)
(iii) Find the bearing of the Quest from the Longview after 3 hours.
(Answer to the nearest degree)
(b) Shade the region represented by $9<x^{2}+y^{2} \leq 25$
(c) Given that $\cos \theta=\frac{\sqrt{3}}{2}$ and $180^{\circ} \leq \theta \leq 360^{\circ}$, find the exact value of $\sin \theta$.
(d) Solve for x :

$$
\log (x)+\log (x-3)=\log 28
$$

End of Question 13

Question 14 (15 marks) Start a new booklet
(a) Find the exact value of $\cot \left(-135^{\circ}\right)$.
(b) For the circle with equation $x^{2}+y^{2}+6 x-8 y=0$:
(i) Show that the centre of the circle is $(-3,4)$ and hence find the radius.
(ii) Show that the circle passes through the origin.
(iii) The origin is at one end of a diameter of the circle.

Find the coordinates of the other end of this diameter.
(c) If $y=\frac{\sqrt{x+1}}{x}$ show that $y^{\prime}=\frac{-x-2}{2 x^{2} \sqrt{x+1}}$.
(d) Differentiate $y=x^{2}+b x+c$ and hence find the values of b and c if the line $3 x+y-5=0$ is a normal to the curve at the point $X(3,-1)$.

Question 14 continues on the next page

Question 14 Continued

(e) In the diagram $A B=2, B C=4$ and $C D=1$.

If $P D^{2}=2 P A^{2}$:
(i) Show that $P D^{2}=P B^{2}+8 P B+17$
(ii) Hence find $P B$

End of Examination

