St Aloysius College Year 11 Mathematics Preliminary examination 2016

St Aloysius' College Year 11 Preliminary Examinations 2016

MATHEMATICS

General Instructions

Reading time – 5 minutes Working time – 2 hours

- Write using black or blue pen only
- Board approved calculators may be used
- Examination papers must NOT be removed from the examination room
- Attempt all questions

Total marks: 70

Section I:

- 10 objective response questions worth 1 mark each.
- Give your answers on the Section I answer sheet.
- Only the letter will be considered for marking.

Section II:

- 4 questions worth 15 marks each consisting of shorter part-questions.
- Attempt all questions.
- Marks for each part are shown in the margin.
- Hand in a booklet for each question, even if not attempted.
- If a second booklet is used place it inside the first.

10 marks Attempt Questions 1 – 10. Allow about 15 minutes for this section. Use the multiple-choice answer sheet for Questions 1 – 10.

- 1. What is the derivative of the expression $6x^4 + 9x^2 12x + 9$?
 - (A) $24x^3 + 18x 12$
 - (B) $4x^3 + 2x 12$
 - (C) $24x^3 + 18x^2 12$
 - (D) $24x^3 + 18x 3$
- 2. What is the domain of the function $f(x) = \sqrt{3x-2}$?
 - (A) $-\frac{2}{3} > x > \frac{2}{3}$ (B) $-\frac{2}{3} \ge x \ge \frac{2}{3}$ (C) $x > \frac{2}{3}$ (D) $x \ge \frac{2}{3}$
- 3. What is the gradient of the tangent to the curve $y = 4x^2 3x + 2$ at the point where x = 2?
 - (A) 10
 - (B) 12
 - (C) 13
 - (D) 15

4. What is the equation of the circle shown in the diagram below?

St Aloysius College Year 11 2Unit Mathematics Preliminary examination 2016

5. In baseball, the batter runs around a square whose sides have a length of 27.4 metres, as shown in the diagram. A player is standing at the point P, 9.1 metres from B. *ABP* is a straight line.

What is the distance of the player at *P* from the point *D*, correct to 1 decimal place?

- (A) 28.8 m
- (B) 29.6m
- (C) 38.7 m
- (D) 45.6 m

- 6. What are the *x* coordinates of the points of intersection of the parabola $y = x^2 + 6x 3$ and the straight line y = 2x + 9?
 - (A) x = -4, 8
 - (B) x = -6, 2
 - (C) x = 3, 2
 - (D) x = -2, 4
- 7. If $\cos \alpha = \frac{a}{b}$, where α is an acute angle, what is the value of $\cos(180^\circ + \alpha)$?
 - (A) $\frac{\sqrt{b^2 a^2}}{b}$ (B) $\frac{a}{b}$
 - (C) $-\frac{a}{b}$

(D)
$$-\frac{b}{a}$$

8. The diagram shows $\triangle ABC$ and $\triangle EDC$. AB = ED and $\angle BAC = \angle DEC$. Which statement below is **not** sufficient to prove that $\triangle ABC$ and $\triangle EDC$ are congruent?

St Aloysius College Year 11 2Unit Mathematics Preliminary examination 2016

- 9. What are the solutions of $\cot \theta = 0$, where $0 \le \theta \le 360^{\circ}$?
 - (A) no solutions
 - (B) 90° and 270°
 - (C) 0° , 180° and 360°
 - (D) 45° and 225°
- 10. An infinite geometric series has a first term of 3 and a limiting sum of $\frac{9}{5}$. What is the common ratio?
 - (A) -0.3
 - (B) –0.Ġ
 - (C) -1.5
 - (D) -3.75

End of Section I

Section II

60 marks Attempt Questions 11 – 14. Allow about 1 hour and 45 minutes for this section. Answer each question in a separate writing booklet. In Questions 11 – 14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks)

(a) Evaluate
$$\sqrt{\frac{3^2 - 1}{4^3 + 1}}$$
 correct to 1 decimal place. 1

- (b) Find the gradient of a line that is perpendicular to the line 3x y + 1 = 0. 2
- (c) Evaluate $(1.3 \times 10^{-10}) \div (5.5 \times 10^{-4})$, expressing your answer in scientific notation **1** correct to 3 significant figures.
- (d) Find the exact roots of the equation $2x^2 4x + 1 = 0$. 2

(e) Solve
$$|3a-5| < 4$$
. 2

(f) Factorise $3x^3 - 8x^2 + 4x$. 2

(g) Rationalise the denominator of
$$\frac{2+\sqrt{2}}{1+\sqrt{2}}$$
. 2

(h) Solve
$$2\log_a x - \log_a 4 = 2\log_a 8$$
 3

End of Question 11

St Aloysius College Year 11 2Unit Mathematics Preliminary examination 2016

Question 12 (15 marks) Start a new booklet

(a) The points A and B have coordinates (3,8) and (-2,-4) respectively.

	(i)	Find the equation of the line that is parallel to <i>AB</i> and that cuts the <i>y</i> -axis at $y = -3$. Give your answer in general form.	3
	(ii)	Find the midpoint of <i>AB</i> .	2
	(iii)	Find the length of <i>AB</i> .	2
	(iv)	Using your answers to (ii) and (iii), find the equation of the circle that has <i>AB</i> as a diameter.	1
	(v)	Show that the point (4, 8) lies outside this circle.	1
(b)	(b) For the arithmetic sequence		
		2, 7, 12, 17,	
	(i)	Find a formula for the <i>n</i> th term	2
	(ii)	Find the 27 th term	1
	(iii)	Find the sum of the first 27 terms	1

(c) On a number plane, shade the region given by $x \ge 0$, $y \ge 0$ and $y \le 4 - x$. 2

End of Question 12

Question 13 (15 marks) Start a new booklet

(a) What is the value of
$$\sum_{r=1}^{5} (4r+1)?$$

2

(b) Find the exact value of $\sin 240^{\circ}$

(c) Show that
$$\frac{\tan\theta \sec\theta}{1+\tan^2\theta} = \sin\theta$$
 3

- (d) Find the equation of the normal to the curve $y = x^4 + 2x^2 14$ at the point where x = 2. 3
- (e) Find the coordinates of the point on the curve $y = (2x-3)^2$ where the tangent is parallel 2 to the line y = 4x-1.
- (f) The third term of a geometric series is $\frac{3}{2}$ and the sixth term is 12.

(i) Find the first term and the common ratio.	2
(ii) Find the tenth term	1
(iii) Find the sum of the first 10 terms	1

End of Question 13

Question 14 (15 marks) Start a new booklet

(a) In the diagram, $\triangle ABC$ is an isosceles triangle with AB = AC. AD bisects $\angle PAC$ and meets BC produced at D. AP is parallel to BD. $\angle PAD = 37^{\circ}$

NOT TO SCALE

2

Copy or trace this diagram into your writing booklet.

(i)	Find $\angle ACD$	1
(1)		L

(ii) Hence find, giving reasons, $\angle BAC$

(b) Show that
$$\frac{d}{dx} \left[3x^2 (4x-1)^3 \right] = 6x (10x-1) (4x-1)^2$$
. 2

(c) Differentiate $\frac{\sqrt{x}-1}{\sqrt{x}+1}$, giving your answer as a single fraction in surd form. 3

Question 14 continues over the page

Question 14 Continued

(d) A cruise ship leaves port P on a bearing of 120°. It sails at a speed of 30 km/h. After travelling for 300 km, the cruise ship stops at the point Q for <u>one hour</u>.

It then travels on a bearing of 15° and sails at a speed of 42 km/h.

A container ship leaves the port *P* on a bearing of 075° . It sails at a speed of 25 km/h. The paths of the container ship and the cruise ship meet at the point *R*.

Copy the diagram clearly into your answer booklet

(i) Show that $\angle PRQ = 60^{\circ}$.	1
(ii) Use the sine rule to show that the length of <i>PR</i> , to the nearest kilometre is 335km.	2
(iii) Use the cosine rule to show that the length of QR , to the nearest kilometre is 245km.	1
(iv) The cruise ship leaves port <i>P</i> at 8.30 a.m. At what time should the container ship leave <i>P</i> if the two ships are to be at point <i>R</i> at the same time?	3

End of paper