

St Aloysius' College
 Year 11 Preliminary Examination 2017

MATHEMATICS

General Instructions

- Reading time - 5 minutes
- Working time -2 hours
- Write using black pen
- Board-approved calculators may be used
- In Questions 11-14, show relevant mathematical reasoning and/or calculations

Total marks - 70

Section I

10 marks

- Attempt Questions $1-10$
- Allow about 15 minutes for this section

Section II

60 marks

- Attempt Questions 11-14
- Allow about 1 hour and 45 minutes for this section

Section I

10 marks

Attempt Questions 1-10

Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10

1 What is the domain of the function $y=\sqrt{x+4}$?
(A) $y \geq-0$
(B) $y>0$
(C) $x \geq-4$
(D) $x>-4$

2 The diagram shows the triangle $P Q R$ where $P Q=11 \mathrm{~cm}, P R=18 \mathrm{~cm}$ and $\angle P R Q=40^{\circ}$. Which expression correctly gives the value of $\sin \theta$?
(A) $\frac{18}{11 \sin 40^{\circ}}$

(B) $\frac{11}{18 \sin 40^{\circ}}$
(C) $\frac{11 \sin 40^{\circ}}{18}$
(D) $\frac{18 \sin 40^{\circ}}{11}$
$3 \quad A(3, y)$ and $B(7,2)$ are points on the number plane. The gradient of $A B$ is $m=-3$. What is the value of y ?
(A) 14
(B) $\frac{1}{14}$
(C) $\quad-10$
(D) $-\frac{1}{10}$
$4 \quad$ What are the solutions of the equation $|3 x-5|=10$?
(A) $x=-5,15$
(B) $x=-5,5$
(C) $x=-1 \frac{2}{3}, 5$
(D) $\quad x=-5,1 \frac{2}{3}$

5 How many solutions are there to the equation $x^{3}-x^{2}-5 x=0$?
(A) 1
(B) 3
(C) 0
(D) 2

6 Solve $\sin \theta=\frac{1}{\sqrt{2}}, 0 \leq \theta \leq 360^{\circ}$.
(A) $\theta=45^{\circ}, 135^{\circ}$
(B) $\quad \theta=135^{\circ}, 225^{\circ}$
(C) $\theta=225^{\circ}, 315^{\circ}$
(D) $\theta=315^{\circ}, 45^{\circ}$
$7 \quad$ Simplify $\lim _{h \rightarrow 0} \frac{4(x+h)^{2}-4 x^{2}}{h}$
(A) $8 h$
(B) $8 x h+8 h$
(C) $8 x+8 h$
(D) $8 x$

8 The line $y=m x-2$ is a tangent to the curve $y=3 x^{2}-2 x+1$ at the point $(1,2)$.

What is the value of m ?
(A) 4
(B) $\frac{1}{2}$
(C) $\quad-4$
(D) 2

9 The function $y=f(x)$ is defined as:

$$
f(x)= \begin{cases}x^{2}+1 & x<0 \\ 1-x^{2} & x \geq 0\end{cases}
$$

What is the range of $f(x)$?
(A) $y \leq-1, y \geq 1$
(B) all real y
(C) $y<-1, y \geq 1$
(D) $-1 \leq y \leq 1$

10 If $8^{x+3} \times 2^{x-2}=2^{x} \times 4^{3 x-1}$, what is the value of x ?
(A) 0
(B) 2
(C) 3
(D) -3

Section II

60 marks

Attempt Questions 11-14
Allow about $\mathbf{1}$ hour and $\mathbf{4 5}$ minutes for this section

Question 11 (15 marks) Use a SEPARATE writing booklet.
(a) Evaluate $\sqrt{\frac{2.6^{2}+5.2^{2}}{1.3}}$ correct to 2 significant figures.
(b) Expand and simplify $5(x+3)^{2}-x(7-2 x)$.
(c) Factorise $3 x^{2}+15 x-72$.
(d) Rationalise the denominator of the expression $\frac{4+\sqrt{6}}{\sqrt{2}}$.
(e) The point $M(-4,1)$ is the midpoint of the points $A(2,6)$ and $B(k,-4)$. Find the value of k.
(f) Determine if the function $f(x)=3 x^{4}-4 x^{2}$ is even, odd or neither.
(g) Find the equation of the circle with radius 3 units and centre $(0,-4)$.
(h) Shade the region defined by $y \geq x^{2}+1, x \geq 0$ and $y \leq 3$. Show all y-intercepts3 and points of intersection.

End of Question 11

Question 12 (15 marks) Use a SEPARATE writing booklet.

(a) Differentiate the following functions with respect to x
(i) $\quad f(x)=4 x^{2}-6 x-9$
(ii) $\quad f(x)=\frac{x}{\sqrt{x}}$
(iii) $f(x)=\frac{2 x^{3}}{3+x^{2}}$
(b) Differentiate from first principles $f(x)=2 x^{2}-3 x+7$
(c) The diagram shows the triangle $A B C$. The coordinates of A are $(0,6)$ and the coordinates of B are $(3,0) . B C$ is perpendicular to $A B . A C$ is parallel to the x-axis.

NOT TO
SCALE
(i) Find the gradient of line $B C$.
(ii) Show that the equation of the line $B C$ is $x-2 y-3=0$
(iii) Hence or otherwise, show that the coordinates of the point C are $(15,6)$.
(iv) Find the length of $B C$. Express your answer in exact simplified form.
(v) Find the size of $\angle A C B$, correct to the nearest degree.
(vi) Find the area of triangle $A B C$.

End of Question 12

Question 13 (15 marks) Use a SEPARATE writing booklet.
(a) If $f(x)= \begin{cases}1 & x<0 \\ x+2 & x \geq 0\end{cases}$
(i) Evaluate $f(-4)+f\left(-\frac{1}{2}\right)+f(0)$
(ii) Sketch $y=f(x)$ for $-3 \leq x \leq 3$
(b) Given $\sin \theta=-\frac{4}{5}$ and $\tan \theta>0$, find the exact value of
(i) $\cos \theta$
(ii) $\cot \theta$
(c) Prove $\frac{\sin A}{1+\cos A}+\frac{1+\cos A}{\sin A}=2 \operatorname{cosec} A$
(d) Find the gradient of the normal to the curve $f(x)=(2 x+3)^{2}$ at the point where $x=-1$.
(e) $A B C D$ is a quadrilateral, with the diagonal $A C$ drawn as shown. E is a point on $A B$, such that $E C \| A D$. Find the size of $\angle A E C$ and $\angle B C E$.

Question 13 Continues on Page 9
(f) The polygon $M N O P Q$ is a regular pentagon $\angle O P S=60^{\circ}, \angle R S P=103^{\circ}$ and $\angle N R S=103^{\circ}$ as shown in the diagram.

(i) Find the size of $\angle O N P$.
(ii) Find the size of $\angle O N R$.

End of Question 13

Question 14 (15 marks) Use a SEPARATE writing booklet.

(a) Solve $\cos ^{2} \theta=\frac{1}{4}$ where $0 \leq \theta \leq 360^{\circ}$.
(c) The diagram shows the graphs $y=\sin x$ and $y=\cos x+1$ for $0^{\circ} \leq x \leq 360^{\circ}$.

(i) State the coordinates of the point A.
(ii) Determine the y-ordinate of the point B.
(iii) Find the coordinates of the first point of intersection of the two graphs for $x \geq 360^{\circ}$.
(iv) Let d be the vertical distance between the two graphs when $x=30^{\circ}$. Find the exact value of d.
(v) Find the next value of x where the vertical distance between the two graphs equals d.
(d) A yacht sails 640 metres from point P to point A on a bearing of 050°. It then sails 960 metres from point A to point B on a bearing of 120°.
(i) Draw a clear diagram showing the above information.
(ii) Find the distance of point B from point P correct to the nearest metre.
(iii) Find the bearing of point P from point B correct to the nearest degree. 2

41120 Prelim 2017 Solutions
Q1

$$
\begin{align*}
x+4 & \geqslant 0 \tag{C}\\
x & \geqslant-4
\end{align*}
$$

Q2

$$
\begin{aligned}
& \frac{\sin \theta}{18}=\frac{\sin 40^{\circ}}{11} \\
& \sin \theta=\frac{18 \sin 40^{\circ}}{11}
\end{aligned}
$$

Q3

$$
\begin{align*}
& m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad A(3, y) \\
& -3=\frac{y-2}{3-7} \\
& -3=\frac{y-2}{-4} \\
& 12=y=-3 \\
& \therefore y=14
\end{align*}
$$

Q4 $\quad|3 x-5|=10$

$$
\begin{array}{rlrl}
3 x-5 & =10 & 3 x-5 & =-10 \\
3 x & =15 & 3 x & =-5 \\
x & =5 & x & =\frac{-5}{3}
\end{array}
$$

Q5

$$
\begin{align*}
& x^{3}-x^{2}-5 x=0 \\
& x\left(x^{2}-x-5\right)=0 \\
& x=0 \quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& \\
& =\frac{1 \pm \sqrt{1+20}}{2} \tag{B}\\
& \\
&
\end{align*}
$$

Q6

$$
\begin{align*}
& \sin \theta=\frac{1}{\sqrt{2}} \\
& \underline{y} / \tag{A}\\
& \therefore \theta=45^{\circ}, 135^{\circ}
\end{align*}
$$

$$
\text { Q7 } \begin{align*}
& \lim _{h \rightarrow 0} \frac{\frac{4\left(x^{2}+2 x h+h^{2}\right)-4 x^{2}}{h}}{h} \\
= & \lim _{h \rightarrow 0} \frac{4 x^{2}+8 x h+4 h^{2}-4 x^{2}}{h} \\
= & \lim _{h \rightarrow 0} \frac{h(8 x+4 h)}{h} \\
= & \lim _{h \rightarrow 0} 8 x+4 h \\
= & 8 x \tag{D}
\end{align*}
$$

Q8

$$
\begin{align*}
& y^{\prime}=6 x-2 \quad(1,2) \\
& m=6(1)-2 \\
& m=4 \tag{A}
\end{align*}
$$

Q9
\mathbb{R} : all real y

Q10

$$
\begin{align*}
8^{x+3} \times 2^{x-2} & =2^{x} \times 4^{3 x-1} \\
2^{3(x+3)} \times 2^{x-2} & =2^{x} \times 2^{2(3 x-1)} \\
2^{3 x+9+x-2} & =2^{x+6 x-2} \\
2^{4 x+7} & =2^{7 x-2} \\
4 x+7 & =7 x-2 \tag{C}\\
9 & =3 x \\
\therefore x & =3
\end{align*}
$$

SECTION II
Question 11
a)

$$
\begin{aligned}
& =5.0990 \ldots \\
& =5.1
\end{aligned}
$$

b)

$$
\begin{aligned}
& =5\left(x^{2}+6 x+9\right)-7 x+2 x^{2} \\
& =5 x^{2}+30 x+45-7 x+2 x^{2} \\
& =7 x^{2}+23 x+45
\end{aligned}
$$

c)

$$
\begin{aligned}
& =3\left(x^{2}+5 x-24\right) \\
& =3(x+8)(x-3)
\end{aligned}
$$

d)

$$
\begin{aligned}
& =\frac{4+\sqrt{6}}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} \\
& =\frac{4 \sqrt{2}+\sqrt{12}}{2} \\
& =\frac{4 \sqrt{2}+2 \sqrt{3}}{2}=2 \sqrt{2}+\sqrt{3}
\end{aligned}
$$

e)

$$
\begin{aligned}
& M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
& \therefore-4=\frac{2+k}{2} \\
& -8=2+k \\
& k=-10
\end{aligned}
$$

f)

$$
\begin{aligned}
& f(x)=3 x^{4}-4 x^{2} \\
& f(-x)=3(-x)^{4}-4(-x)^{2} \\
&=3 x^{4}-4 x^{2} \\
&=f(x) \\
& \therefore \text { even }
\end{aligned}
$$

g)

$$
\begin{aligned}
(x-h)^{2}+(y-k)^{2} & =r^{2} \\
\therefore(x-0)^{2}+(y+4)^{2} & =9 \\
x^{2}+(y+4)^{2} & =9
\end{aligned}
$$

Question 12
a)

$$
\text { ii. } \begin{aligned}
f^{\prime}(x) & =8 x-6 \\
\text { ii }(x) & =x \cdot x^{-\frac{1}{2}} \\
& =x^{\frac{1}{2}} \\
f^{\prime}(x) & =\frac{1}{2} \cdot x^{-\frac{1}{2}} \\
& =\frac{1}{2 \sqrt{x}}
\end{aligned}
$$

iii.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{6 x^{2}\left(3+x^{2}\right)-2 x^{3}(2 x)}{\left(3+x^{2}\right)^{2}} \\
& =\frac{18 x^{2}+6 x^{4}-4 x^{4}}{\left(3+x^{2}\right)^{2}} \\
& =\frac{18 x^{2}+2 x^{4}}{\left(3+x^{2}\right)^{2}}
\end{aligned}
$$

b)

$$
\begin{aligned}
f(x) & =2 x^{2}-3 x+7 \\
f(x+h) & =2(x+h)^{2}-3(x+h)+7 \\
& =2\left(x^{2}+2 x h+h^{2}\right)-3 x-3 h+7 \\
& =2 x^{2}+4 x h+2 h^{2}-3 x-3 h+7
\end{aligned}
$$

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{2 x^{2}+4 x h+2 h^{2}-3 x-3 h+7-\left(2 x^{2}-3 x+7\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{4 x h+2 h^{2}-3 h}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(4 x+2 h-3)}{h} \\
& =\lim _{h \rightarrow 0} 4 x+2 h-3 \\
& =4 x-3
\end{aligned}
$$

c) i.

$$
\begin{aligned}
m_{A B} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{0-6}{3-0} \\
& =-2
\end{aligned}
$$

$$
\begin{aligned}
& A B \& A C \therefore m_{A B} \times m_{A C}=-1 \\
& \therefore m_{A C}=\frac{1}{2}
\end{aligned}
$$

ii. $\quad y-y_{1}=m\left(x-x_{1}\right)$

$$
\begin{aligned}
y-0 & =\frac{1}{2}(x-3) \\
2 y & =x-3 \\
\therefore x-2 y-3 & =0
\end{aligned}
$$

iii. $\quad y=6, x-2 y-3=0$

$$
\begin{aligned}
x-12-3 & =0 \\
\therefore \quad c(15,6) & =15
\end{aligned}
$$

iv.

$$
\begin{aligned}
d & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(15-3)^{2}+(6-0)^{2}} \\
& =\sqrt{144+36} \\
& =\sqrt{180} \\
& =6 \sqrt{5}
\end{aligned}
$$

v.

$$
\begin{array}{rlrl}
d_{A B}=\sqrt{(3-0)^{2}+(0-6)^{2}} & \tan \theta & =\frac{A B}{B C} \\
& =3 \sqrt{45} & \tan \theta & =\frac{3 \sqrt{5}}{6 \sqrt{5}} \\
\tan \theta & =\frac{1}{2} \\
\theta & =27^{\circ}
\end{array}
$$

vi.

$$
\begin{aligned}
A & =\frac{1}{2} b h \\
& =\frac{1}{2} \times 3 \sqrt{5} \times 6 \sqrt{5} \\
& =45 u^{2}
\end{aligned}
$$

Question 13
a) i.

$$
\begin{aligned}
f(-4) & =1 \\
f\left(-\frac{1}{2}\right) & =1 \\
f(0) & =0+2 \\
& =2 \\
\therefore f(-4) & +f\left(-\frac{1}{2}\right)+f(0)=4
\end{aligned}
$$

ii.

b) $\sin \theta=\frac{-4}{5}, \tan \theta>0$

S	A	
T	C	$4 \underbrace{1}$,

i. $\cos \theta=-\frac{3}{5}$
ii $\cot \theta=\frac{3}{4}$
C)

$$
\begin{aligned}
& \frac{\sin A}{1+\cos A}+\frac{1+\cos A}{\sin A}=2 \operatorname{cosec} A \\
& \begin{aligned}
\text { LHS } & =\frac{\sin ^{2} A}{(1+\cos A) \sin A}+\frac{(1+\cos A)^{2}}{(1+\cos A) \sin A} \\
& =\frac{\sin ^{2} A+1+2 \cos A+\cos ^{2} A}{(1+\cos A) \sin A} \\
& =\frac{1+1+2 \cos A}{(1+\cos A) \sin A} \\
& =\frac{2(1+\cos A)}{(1+\cos A) \sin A} \\
& =2 \operatorname{cosec} A \\
& =\text { RHS }
\end{aligned}
\end{aligned}
$$

d)

$$
\begin{aligned}
& f^{\prime}(x)=2(2 x+3) \times 2 \\
& f^{\prime}(-1)=2(2(-1)+3) \times 2 \\
& \\
& =4 \\
& \therefore m_{T}=4 \\
& m_{T} \times m_{N}=-1 \\
& \therefore m_{N}=\frac{-1}{4}
\end{aligned}
$$

e) $\angle C A D+72^{\circ}+84^{\circ}=180^{\circ}$ (angle sum of a triangle is 180°)

$$
\angle C A O=24^{\circ}
$$

$\angle C A D=\angle A C E$ (alternate angles on parallel lines are equal)

$$
\begin{aligned}
& \angle A E C+38^{\circ}+24^{\circ}=180^{\circ} \quad \text { (angle sum of a } \\
& \angle A E C\left.=118^{\circ} \text { triangle is } 180^{\circ}\right) \\
&
\end{aligned}
$$

$\angle B E C+118^{\circ}=180^{\circ}$ (angles on a straight line are supplementary

$$
\angle B E C=62^{\circ}
$$

$62^{\circ}+90^{\circ}+\angle B C E=180^{\circ}$ (angle sum of a triangle is 180°)

$$
\angle B C E=28^{\circ}
$$

f)

$$
\text { i. } \begin{aligned}
\angle P O N & =\frac{180^{\circ}(n-2)}{n} \quad \begin{array}{c}
\text { (interior angle of a } \\
\text { regular polygon) }
\end{array} \\
& =108^{\circ}
\end{aligned}
$$

$$
\angle O N P=\frac{180^{\circ}-108^{\circ}}{2} \text { (base angles of an }
$$ are equal)

$$
\text { LOND }=36
$$

ii. reflex $\angle P O N=360^{\circ}-108^{\circ}$ (angles at a point $=252^{\circ} \quad$ add to 360°)
$252^{\circ}+60^{\circ}+103^{\circ}+103^{\circ}+\angle$ ONR $=540^{\circ}$ (angle sum of a pentagon

$$
\therefore \quad \angle O N R=22^{\circ}
$$ is 540°)

c) i. $A(0,2)$
ii.

$$
\begin{aligned}
& x=90^{\circ} \\
& y=\sin \left(90^{\circ}\right) \\
& y=1
\end{aligned}
$$

iii. $\left(450^{\circ}, 1\right)$
iv.

$$
\begin{aligned}
y & =\cos 30^{\circ}+1 \\
y & =\sin 30^{\circ} \\
\therefore d & =\cos 30^{\circ}+1-\sin 30^{\circ} \\
& =\frac{\sqrt{3}}{2}+1-\frac{1}{2} \\
& =\frac{\sqrt{3}+2-1}{2} \\
& =\frac{\sqrt{3}+1}{2}
\end{aligned}
$$

v.

$$
\begin{aligned}
y & =\cos 240^{\circ}+1-\sin 240^{\circ} \\
& =\frac{-1}{2}+1+\frac{\sqrt{3}}{2} \\
& =\frac{-1+2+\sqrt{3}}{2} \\
& =\frac{1+\sqrt{3}}{2}
\end{aligned}
$$

\therefore next value of x is 240°.
d) i .

ii. $(P B)^{2}=640^{2}+960^{2}-2 \times 640 \times 960 \cos 110^{\circ}$

$$
\begin{aligned}
& P B=1323.4 \ldots \\
& P B=1323 \mathrm{~m}
\end{aligned}
$$

iii. $\frac{\sin \angle A P B}{640}=\frac{\sin 110^{\circ}}{1323}$

$$
\begin{aligned}
\sin \angle A B P & =\frac{640 \sin 110^{\circ}}{1323} \\
\angle A B P & =27.0 \ldots \\
& =27^{\circ}
\end{aligned}
$$

\therefore Bearing of P from $\begin{aligned} B & =360^{\circ}-27^{\circ}-60^{\circ} \\ & =273^{\circ}\end{aligned}$ $=273^{\circ}$

