St George Girls High School

Year 11

End of Preliminary Course Examination

2011

Mathematics

Time Allowed: 3 hours (plus 5 minutes reading time)

Instructions

- 1. Attempt all 8 questions.
- 2. All necessary working must be shown.
- 3. Begin each question on a new page.
- 4. Marks will be deducted for careless work or poorly presented solutions.

Question 1 (14 marks) - Start a new page

Marks

a) Expand and simplify 5x - 3(2x - 7)

1

b) Factorise

(i)
$$4m - 16m^2$$

1

(ii)
$$x^2 - 3x - 18$$

1

(iii)
$$8 - 27x^3$$

1

(iv)
$$x^3 + 5x^2 - 4x - 20$$

2

c) Simplify

(i)
$$\frac{4x+8}{x} \times \frac{x^2}{x^2-4}$$

2

(ii)
$$\frac{5}{x+2} - \frac{3}{x+3}$$

2

d) Express $0.0\dot{5}$ as a simplified fraction.

2

e) Solve by "completing the square":

$$x^2 + 6x - 10 = 0$$

Question 2 (14 marks) - Start a new page

Marks

a) Simplify:

(i)
$$\sqrt{99}$$

1

(ii)
$$\sqrt{54} - \sqrt{18} + \sqrt{50} - \sqrt{24}$$

2

b) Solve for x:

(i)
$$x^2 = 28 - 3x$$

2

(ii)
$$\frac{2x-7}{x+3} = \frac{4}{3}$$

2

c) Solve the simultaneous equations

$$2x - 5y = -2$$

$$3x + 5y = 17$$

d) Solve $|3x-2| \le 4$ and graph your solution on a number line.

3

e) Show that
$$\frac{4}{3-\sqrt{3}} - \frac{2}{\sqrt{3}}$$
 is rational

Question 3 (14 marks) - Start a new page

Marks

Write down the exact value of $\sec \theta$

1

2

- b) If $\cos \theta = -0.6$ and $0^{\circ} \le \theta \le 360^{\circ}$ find all values of θ to the nearest minute.
- c) If $\tan \theta = -\frac{4}{9}$ and $\sin \theta < 0$ write down the exact value of:
 - (i) $\cos \theta$

1

(ii) $\csc \theta$

1

d) What is the exact value of sin 315°?

1

e) Prove that
$$\frac{1}{1+\cos\theta} + \frac{1}{1-\cos\theta} = 2\csc^2\theta$$

2

Find θ to the nearest degree.

3

3

g)

Find, to the nearest minute, the size of the largest angle in $\triangle ABC$

Question 4 (14 marks) - Start a new page

Marks

A(6,3), B(4,0) and C(-2,4) are shown on the diagram.

(i) Find the gradient of AB.

1

(ii) Show that $AB \perp BC$

2

(iii) Find the coordinates of M the midpoint of AC.

1

(iv) If ABCD is a rectangle, find the coordinates of D.

2

b) Find the angle of inclination of the line y = -3x + 5. (Answer to the nearest degree)

2

- c) Find the perpendicular distance from the point (5, 2) to the line 3x 4y = 1
- d) Show that the points P(1,-1), Q(2,1) and R(5,7) are collinear.
- e) Find the value of k if the lines 2x + ky + 7 = 0 and 3x 2y + 8 = 0 are parallel.

Question 5 (14 marks) - Start a new page

Marks

a) Simplify $2^{3x+2} \times 4^{-x}$

1

b) Solve $9^{x+1} = 27$

2

- c) If $\log_x 3 = m$ and $\log_x 2 = n$ find
 - (i) $\log_x 12$

1

(ii) $\log_x 64$

1

(iii) $\log_x (3x^2)$

1

d) Solve for x, giving answer correct to 3 decimal places

(i)
$$2^x = 36$$

2

(ii)
$$3^{x-2} < 10000$$

2

d) On separate diagrams sketch the graphs of the following functions, showing all important features.

(i)
$$y = 3^x$$

1

(ii)
$$y = 4 - 2^x$$

Question 6 (14 marks) - Start a new page

Marks

- a) For the arithmetic series $7 + 10 + 13 + \cdots$ find:
 - (i) an expression for T_n , the n^{th} term.

2

(ii) the number of terms less than 1000.

2

b) A geometric series has $T_3=108$ and $T_6=32$. Find the first term, a, and common ratio, r.

2

c) Find the value of x, given that $\log_3 54$, $\log_3 x$, $\log_3 6$ are successive terms of an arithmetic series.

2

d) For the arithmetic series $26 + 22 + 18 + \cdots$ find the number of terms if the sum is 90.

4

e) Find

$$\sum_{k=1}^{\infty} 5 \times \left(\frac{2}{3}\right)^k$$

Question 7 (14 marks) - Start a new page

Marks

2

2

Copy and complete the graph of y = f(x) given that f(x) is an odd function.

b) Draw neat sketches of each of the following graphs, showing all relevant features. Each of your graphs should be at least $\frac{1}{4}$ of a page.

(i)
$$x^2 + (y-1)^2 = 1$$

(ii)
$$y = |2x - 3|$$

$$(iii) \quad y = \frac{1}{x-2}$$

(iv)
$$y = \begin{cases} x + 2 & \text{for } x < 0 \\ 1 - x^2 & \text{for } x \ge 0 \end{cases}$$

c) Show that the function
$$g(x) = \frac{x^2}{x^4 + 4}$$
 is even.

d) Sketch the region defined by
$$y \le \sqrt{1-x^2}$$

Question 8 (14 marks) - Start a new page

Marks

a) Differentiate with respect to x

(i)
$$y = 3x^4 - x + 7$$

1

(ii)
$$f(x) = (8x + 5)^6$$

2

(iii)
$$g(x) = \frac{5}{x^3}$$

1

(iv)
$$y = \frac{x^2}{\sqrt[3]{x}}$$

2

- b) Find the equation of the tangent to the curve $y = x^3 2x^2 + 5$ at the point where x = 2
- c) If $y = x\sqrt{x+1}$ find:

(i)
$$\frac{dy}{dx}$$

2

4

(ii) the coordinates of the point at which $\frac{dy}{dx} = 0$