St George Girls High School

Year 11

End of Preliminary Course Examination

2012

Mathematics

Time Allowed: 3 hours (plus 5 minutes reading time)

Instructions

- 1. Attempt all questions.
- 2. All necessary working must be shown.
- 3. Marks will be deducted for careless work or poorly presented solutions.

Part A

Total marks (12)

Attempt Questions 1 - 12

Use the answer sheet provided

Part B

Total marks **(84)** Attempt Questions 13 – 19 Start each question in a new booklet

Student Name:			<u>-</u> -
---------------	--	--	------------

 $D \bigcirc$

Part A

Multiple-choice Answer Sheet - Questions 1 - 12

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.

Sample 2 + 4 =(A) 2(B) 6 (C)8(D) 9 $C \bigcirc$ $A \bigcirc$ В D O

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer. В

 $C \bigcirc$

If you change your mind and have crossed out what you consider to be the correct answer, then indicate this by writing the word correct and drawing an arrow as follows:

correct $C \bigcirc$ $D \bigcirc$ \bigcirc В \bigcirc C \bigcirc 1. Α

 \bigcirc D C \bigcirc \bigcirc \bigcirc \bigcirc 2. Α В D 3. 0 \bigcirc C \bigcirc 0 Α В D 0 0 C \bigcirc \circ 4. Α В D C \bigcirc \circ \bigcirc 5. Α \bigcirc В D C \bigcirc \bigcirc \bigcirc \bigcirc В 6. Α D C \bigcirc \bigcirc \bigcirc 7. \bigcirc В D Α C \bigcirc \bigcirc \bigcirc В 8. Α D 9. Α \circ В \circ C \circ D \bigcirc C \bigcirc \bigcirc \bigcirc 10. Α \circ В D \bigcirc C \bigcirc \bigcirc D 11. Α В 0 \bigcirc C \bigcirc \bigcirc В D 12. Α

Part A

Multiple Choice Questions 1 - 12

All questions are of equal value (1 mark each) - (12 Marks)

Select the alternative A, B, C or D that best answers the question. Fill in the response oval on the Answer Sheet.

- 1. What is $\frac{1+\sqrt{3}}{5-2\sqrt{3}}$ as a fraction with a rational denominator?
 - (A) $\frac{-5-\sqrt{3}}{7}$
 - (B) $\frac{-5+\sqrt{3}}{13}$
 - (C) $\frac{11-7\sqrt{3}}{7}$
 - (D) $\frac{11+7\sqrt{3}}{13}$
- 2. The formula H = 5m(Y X) is used to calculate the heat (H) required to raise the temperature of a steel rod, of mass m, from a temperature of X to a temperature of Y. Rearrange the formula to make X the subject.
 - $(A) \quad X = \frac{5m H}{Y}$
 - (B) $X = \frac{H 5m}{Y}$
 - $(C) \quad X = \frac{H 5mY}{5m}$
 - (D) $X = \frac{5mY H}{5m}$
- 3. What is the domain and range of the function $f(x) = \sqrt{9-x^2}$?
 - (A) Domain: $-3 \le x \le 3$, Range: $0 \le y \le 3$
 - (B) Domain: $-3 \le x \le 3$, Range: $-3 \le y \le 3$
 - (C) Domain: $0 \le x \le 9$, Range: $-9 \le y \le 9$
 - (D) Domain: $0 \le x \le 9$, Range: $0 \le y \le 9$

Part A (cont'd)

- 4. What is the value of $\lim_{x\to c} \frac{x^3-c^3}{x-c}$?
 - (A) Undefined
 - (B) c^2
 - (C) $3c^2$
 - (D) c³
- 5. Alex leaves point X and walks on a bearing of 230°.

Brooke leaves point X and walks on a bearing of S70°E.

What is the angle AXB?

- (A) 50°
- (B) 120°
- (C) 160°
- (D) 300°
- 6. What is the correct expression for AC in triangle ABC?
 - $(A) \quad \frac{15\sin 80^{\circ}}{\sin 40^{\circ}}$
 - (B) $\frac{15\sin 80^{\circ}}{\sin 60^{\circ}}$
 - $(C) \quad \frac{15\sin 40^{\circ}}{\sin 60^{\circ}}$
 - $(D) \quad \frac{\sin 40^{\circ}}{15\sin 80^{\circ}}$

Part A (cont'd)

- 7. What is the value of x in the diagram?
 - (A) 6cos 42°
 - (B) $\frac{6}{\cos 42^{\circ}}$
 - (C) 6 sin 42°
 - (D) $\frac{6}{\sin 42^{\circ}}$

Not to scale

- 8. What is the value of $\frac{a}{b}$ if the lines ax + 2y = 6 and 4y = bx 9 are parallel?
 - (A) $\frac{1}{2}$
 - (B) $-\frac{1}{2}$
 - (C) -2
 - (D) 2
- 9. Which of the following could be the graph of $y = \frac{2}{3}x 2$?

(B)

(C)

(D)

Part A (cont'd)

- 10. What is the value of $\frac{dy}{dx}$ if $y = 2\sqrt{x}$?
 - (A) $\frac{dy}{dx} = \frac{1}{\sqrt{x}}$
 - (B) $\frac{dy}{dx} = \frac{2}{\sqrt{x}}$
 - (C) $\frac{dy}{dx} = \frac{\sqrt{x}}{2}$
 - (D) $\frac{dy}{dx} = 2$
- 11. What is the gradient of the curve $y = x^2 x 6$ at (6,24)?
 - (A) 11
 - (B) 12
 - (C) 23
 - (D) 24
- 12. What is the value of f'(3) if $f(x) = 3x x^3$?
 - (A) f'(3) = -24
 - (B) f'(3) = -18
 - (C) f'(3) = 0
 - (D) f'(3) = 9

Part B

Question 13 - Start a New Booklet - (12 Marks)

Marks

a) Evaluate, correct to three significant figures.

2

$$\sqrt{\frac{1}{8.6} + 2.5^2}$$

b) Factorise: $12x^2y^2 - 27y^2$

2

c) Simplify: $\sqrt{5} \times \sqrt{20}$

1

d) Solve:

2

$$\frac{2x}{3} - \frac{x+1}{4} = 2$$

e) Solve the simultaneous equations

3

$$x - 3y = 11$$
$$2x + y = 8$$

f) Simplify:

$$\frac{y^3 + 8}{2y^2 - 4y + 8}$$

Question 14 - Start a New Booklet - (12 Marks)

Marks

a) Express in simplest exact form $\frac{ab^2}{c^3}$ where

2

$$a = \left(\frac{3}{2}\right)^3$$
, $b = \left(\frac{2}{3}\right)^2$ and $c = \left(\frac{3}{2}\right)^{-2}$

b) Simplify:

(i)
$$3^n \times 9^{n+1}$$

1

(ii)
$$\frac{4^{n-1} \times 8^{2n}}{16^{2n-1}}$$

2

c) If $\log_a 5 = p$ and $\log_a 2 = q$, find an expression in terms of p and q for $\log_a \left(\frac{8}{5}\right)$

2

d) Evaluate correct to one decimal place log₂9

2

e) On separate diagrams draw a neat sketch, showing essential features of

(i)
$$y = 2^x$$

1

(ii)
$$y = 1 - 2^x$$

The equations of the lines l: x - 2y + 2 = 0 and k: x + 2y - 10 = 0 are given

(i) Find the exact distance between A(-2,0) and C(6,2)

(iii) Find the perpendicular distance from B to the line AC

1

2

- (ii) Show that the equation of the line through the points A and C is x 4y + 2 = 0
- 2

(iv) Find the area of $\triangle ABC$ in exact form.

2

2

1

- (v) State the three inequalities which simultaneously describe the interior of the shaded triangle *ABC*.
- (vii) Find the coordinates of D such that the quadrilateral ABCD is a parallelogram.
- b) Find the equation of the line which is perpendicular to the line with equation 3x y + 5 = 0 and passing through the point M(-1, 4)

Question 16 - Start a New Booklet - (12 Marks)

Marks

- a) Simplify:
 - (i) $\sec \theta \cdot \cos \theta$

1

(ii) $\cos^3\theta + \sin^2\theta \cdot \cos\theta$

1

b) Find the exact value of x, given

2

c) If $3 \sin \theta + 2 = 0$, find θ to the nearest minute where $0^{\circ} \le \theta^{\circ} \le 360^{\circ}$

2

- d) If $\sec \theta = -\frac{5}{2}$ and $\sin \theta < 0$ give the exact value of
 - (i) $\sin \theta$

1

(ii) $\cot \theta$

Question 16 (cont'd)

Marks

1

1

e) A bushwalker walked from point A on a bearing of 117° for 50 km to a point B. From point B the walker changed course to a bearing of 215° and walked a further 40 km to point C.

[not to scale]

- (i) Find the exact size of $\angle ABC$
- (ii) Find the size of angle $\angle CAB$ if AC = 59.5 km. [correct to 1 nearest minute] 2
- (iii) What is the bearing of A from C, if C is $S12^{\circ}E$ of A?

taken to give a sum greater than 2000.

d)

3

Question 17 - Start a New Booklet - (12 Marks) Marks In a certain series, the first term is 17 and the eighth term is -4a) (i) find the common difference. 2 (ii) find the value of the fifth term. 1 A geometric series has a first term of 24 and a limiting sum of 128 b) find its common ratio 2 (i) (ii) find the 3rd term of this series 2 2 c) Find $\sum_{1}^{6} (5n^2 - 3n)$

What is the least number of terms of the series 6 + 12 + 24 + ... required to be

Question 18 - Start a New Booklet - (12 Marks)

Marks

a) Draw a neat sketch showing all essential features of the following, on separate number planes

(i)
$$f(x) = \begin{cases} x^2 & \text{for } -4 \le x \le 1 \\ x & \text{for } 1 < x \le 4 \end{cases}$$

(ii)
$$y = -\sqrt{9 - x^2}$$

(iii)
$$y = |x - 2|$$

b) If
$$g(x) = 3x - 5$$
, simplify the expression 2

$$\frac{g(x+h)-g(x)}{h}$$

c) (i) Show that
$$y = \frac{x^2 - 1}{h}$$
 is an ODD function.

(ii) Show that as
$$x \to \infty$$
, $y \to x$

(iii) Show that when
$$x = 1$$
 then $y = 0$ and when $x = 2$ then $y = \frac{3}{2}$

(iv) Describe what geometrical feature would occur in a sketch of this curve where x=0

Question 19 - Start a New Booklet - (12 Marks)

Marks

a) Differentiate

(i)
$$y = 5x^2 - 2x + 1$$

1

(ii)
$$f(x) = (5 - 3x)^4$$

2

(iii)
$$g(x) = x^2(2-x)$$

2

(iv)
$$y = \frac{2x}{x+3}$$

2

Find the equation of the tangent to the curve $y = x^3 - 3x^2 + 2x - 1$ at x = 1b) 3

c)

If the first derivative of f(x) is given by $f'(x) = x^2 - 2x$

2

Describe how you would find x-values of the points on the curve where there are horizontal tangents.

Find these x-values.