Name:	Class:
	G10001

St George Girls High School

Year 11

End of Preliminary Course Examination

2016

Mathematics

Instructions

- 1. Reading time 5 minutes
- 2. Working time 2 hours
- 3. Attempt all questions.
- 4. All necessary working must be shown.
- 5. Marks will be deducted for careless work or poorly presented solutions.

Section I

Total marks **(10)** Attempt Questions 1 – 10 Use the answer sheet provided

Section II

Total marks **(70)** Attempt Questions 11 – 17 Start each question in a new booklet

Section I

10 marks – 1 mark each Attempt Questions 1 – 10

Use the multiple-choice answer sheet for Questions 1-10.

1 Which of the following is equivalent to $\sqrt{243} + 2\sqrt{75}$?

- (A) $19\sqrt{3}$
- (B) $81\sqrt{3}$
- (C) $106\sqrt{3}$
- (D) $2\sqrt{318}$

What is the domain of the function $f(x) = \frac{1}{(x-3)(1-x)}$?

- (A) All real values of x, $x \ne -1$ or $x \ne -3$
- (B) All real values of x, $x \ne -1$ or $x \ne 3$
- (C) All real values of x, $x \ne 1$ or $x \ne -3$
- (D) All real values of x, $x \ne 1$ or $x \ne 3$

3 Solve $|2-3x| \ge 5$

- (A) $x \le -1 \text{ or } x \ge 2\frac{1}{3}$
- (B) $x \ge -1 \text{ or } x \le 2\frac{1}{3}$
- (C) $x \le -2\frac{1}{3}$ or $x \ge 1$
- (D) $x \ge -2\frac{1}{3}$ or $x \le 1$

4 The value of $\lim_{x\to 0} \frac{x^2 + 2x}{x}$ is equal to

- (A) 0
- (B) 1
- (C) 2
- (D) Approaching infinity

- 5 What is the solution to the equation $x^2 + 2x 7 = 0$?
 - (A) $x = -1 \pm \sqrt{2}$
 - (B) $x = -2 \pm \sqrt{2}$
 - (C) $x = -2 \pm 2\sqrt{2}$
 - (D) $x = -1 \pm 2\sqrt{2}$
- 6 What are the values of a and b?

Not to scale

- (A) $a = 43^{\circ} \text{ and } b = 53^{\circ}$
- (B) $a = 43^{\circ} \text{ and } b = 61^{\circ}$
- (C) $a = 45^{\circ} \text{ and } b = 53^{\circ}$
- (D) $a = 45^{\circ} \text{ and } b = 61^{\circ}$
- 7 If $y = 2x\sqrt{x}$, which of the following is an expression for $\frac{dy}{dx}$.
 - (A) $2\sqrt{x}$
 - (B) $3\sqrt{x}$
 - (C) $\frac{1}{x}$
 - (D) $\frac{1}{2\sqrt{x}}$
- 8 Which of the following is an expression for $\frac{(1-\cos x)(1+\cos x)}{\cos^2 x}$?
 - (A) 0
 - (B) $\tan x$
 - (C) $\sec^2 x$
 - (D) $\tan^2 x$

- 9 A regular polygon is such that the size of each interior angle is 150° more than the size of each exterior angle. How many sides does the polygon have?
 - (A) 12
 - (B) 16
 - (C) 20
 - (D) 24

10.

Examine the features of the graph of f(x) supplied.

Which of the graphs below best represents f'(x)?

(A)

(B)

(C)

(D)

End of Section I

Section II

70 marks

Attempt Questions 11 – 17

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 11 (10 marks) Use a SEPARATE writing booklet		
(a)	Solve $\frac{1}{2}(y-3) - \frac{1}{3}(y-2) = 3$	2
(b)	Rationalise the denominator of $\frac{1}{\sqrt{5}-1}$	2

(d) Simplify fully
$$\frac{a^2-b^2}{3a^2-3ab} \times \frac{2a^2+2ab}{a^2+2ab+b^2}$$
 3

(e) Solve
$$2x^2 - 5x = 3$$

Question 12 (10 marks) Use a SEPARATE writing booklet

Marks

(a) Differentiate with respect to x.

(i)
$$7x^5 + \frac{4}{x^2}$$

1

(ii)
$$x(1-x)^6$$

2

(iii)
$$\frac{3x}{2-x}$$

2

(b) ABC is a triangle with DE drawn parallel to BC.

2

Not to scale

In the diagram AD=9, DC=3 and AE=6Find the length of BE giving reasons.

(c) Solve
$$|2x - 5| = 3x + 1$$

Question 13 (10 marks) Use a SEPARATE writing booklet

Marks

(a) The diagram shows the points A(-2,4), B(2,2) and O(0,0). Point C is the fourth vertex of the parallelogram OABC.

- (i) Show that the equation of AB is x+2y-6=0.
- 2

(ii) Show that the length of AB is $2\sqrt{5}$.

- 1
- (iii) Calculate the perpendicular distance from O to the line AB.
- 1

(iv) What are the coordinates of C?

- 1
- (b) The graphs of two trigonometric functions for $180^{\circ} \le x \le 360^{\circ}$ are shown. Write down an equation for graph (i) and for graph (ii).

(c) A function is defined as: $\begin{cases} -x^2 & \text{when } x \le 0 \\ 5x-4 & \text{when } x > 0 \end{cases}$ Evaluate f(-2) + f(3) - f(0)

2

(d) Part of the graph of y = g(x) is sketched below for $x \le 0$. The function y = g(x) is odd.

Use the template provided on the back of the multiple

choice answer sheet to sketch the graph of y = g(x) for x > 0.

Question 14 (10 marks) Use a SEPARATE writing booklet (a)

Marks

1

The graph of y = f(x) is shown below, with four points, A B, C and D shown on the curve.

List the point(s) where the function f(x) is not differentiable.

(b) Find the equation of a straight line that makes an angle of 135° with the positive direction of the x-axis and has a y-intercept of 5. Express your answer in gradient-intercept form.

2

- (c) Sketch the graph of the function $y = \frac{3}{2x-1}$, showing all necessary features. 2
- (d) Prove $\tan \theta \tan \theta \sin^2 \theta = \sin \theta \cos \theta$

2

(e) Find the equation of the normal to the curve $y = x^2 - 6x$ at x = -1

Question 15 (10 marks) Use a SEPARATE writing booklet

Marks

(a) Solve
$$\sin x = -\frac{1}{\sqrt{2}}$$
 for $0^{\circ} \le x \le 360^{\circ}$

2

(b)

(i) Show that $\angle ACB = 88^{\circ}$ to the nearest degree.

2

(ii) Calculate the area of this triangle correct to 1 decimal place.

2

(c) PQRS is a parallelogram. Perpendiculars are dropped from P and R to meet the diagonal QS at T and V respectively.

(i) Prove that the triangles PTQ and RVS are congruent.

3

(ii) Prove that P and R are the same distance from QS.

Question 16 (10 marks) Use a SEPARATE writing booklet

Marks

(a) Differentiate $y = 3x^2 - 2$ from first principles.

2

(b) A ship travels 30 km from A on a bearing of $105^{\circ}T$ to port B and then travels 20 km at a bearing of $200^{\circ}T$ to port C, as shown in the diagram below.

Copy or trace the diagram into your writing booklet.

(i) State the size of $\angle ABC$.

1

(ii) Hence, find the distance between port C and port A correct to the nearest metre

2

(c) Write a set of inequalities that satisfy the shaded region given.

3

(d) State the largest possible domain and range for $y = \frac{x}{|x|}$.

Question 17 (10 marks) Use a SEPARATE writing booklet **Marks** Consider the semicircle $y = \sqrt{25 - x^2}$ for parts (a) - (f) below. Find the derivative of $y = \sqrt{25 - x^2}$. (a) 2 Sketch the semicircle $y = \sqrt{25 - x^2}$. (b) 1 Show that the tangent at P(4,3) on the semicircle has equation 4x + 3y = 25. (c) 2 Verify that the tangent at P is perpendicular to the radius at P. 2 (d) Find the x-intercept and the y-intercept of the tangent. (e) 2 (f) Find the area enclosed between the tangent and the two axes. 1

End of Examination

QUESTION 13 (d)

NAME:_____

Part of the graph of y = g(x) is sketched below for $x \le 0$. The function y = g(x) is odd. Sketch the graph of y = g(x) for x > 0 on the graph provided below.

Name: _	
(lacci

(12) 0

 $D \bigcirc$

Section I

Year 11 End of Preliminary Course Examination

Mathematics

Multiple-choice Answer Sheet - Questions 1 – 10

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.

Sample	2+4 =	(A) 2	ס (ם)	(6) 0	(ע) א		
		$A \bigcirc$	В	C \bigcirc	D 🔾		
If you think you have made a mistake, put a cross through the incorrect answer and fill in the							
new answ	ær.						

B

If you change your mind and have crossed out what you consider to be the correct answer, then indicate this by writing the word correct, and drawing an arrow as follows:

 $\mathsf{C} \bigcirc$

then indicate this by writing the word <i>correct</i> and drawing an arrow as follows: <pre></pre>								
	A		В	<u> </u>	С	D 🔾		
1.	Α	0	В	0	С	0	D	0
2.	Α	0	В	0	С	0	D	0
3.	Α	0	В	0	С	0	D	0
4.	A	0	В	0	С	0	D	0
5.	Α	O .	В	0	C	0	D	0
6.	Α	0	В	0	С	0	D	0
7.	Α	0	В	0	С	0	D	0
8.	Α	0	В	0	С	0	D	0
9.	Α	0	В	0	С	\circ	D	0
10.	Α	0	В	0	С	\circ	D	0