

SYDNEY BOYS' HIGH SCHOOL

MOORE PARK, SURRY HILLS

Year 11 YEARLY EXAMINATIONS

SEPTEMBER 1998

MATHEMATICS

2/3 UNIT COMMON

Time allowed — 2 Hours (Plus 5 minutes reading time) Examiner: P.S. Parker

DIRECTIONS TO CANDIDATES

- ALL questions may be attempted.
- All necessary working should be shown in every question. Full marks may not to awarded for careless or badly arranged work.
- · Approved calculators may be used.
- Hand up your answers in 8 separate booklets. Start a new booklet for EACH qui stion. Indicate your name, class and teacher on each booklet.
- If required, additional booklets may be obtained from the Examination Supervise upon

(i) Each
$$\frac{dy}{dx}$$
 for $y = 6x^2 + 5x - 17$

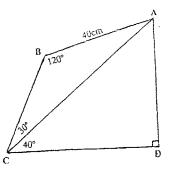
- (d) Find ratio and numbers a and b such that $(1 + \sqrt{b})^2 = a + \sqrt{3}$
- (a) If $\chi = 1$ find the value of $\log_3(x^4 + x^2 + 1)$
- (f) Find the values of a for which |x+2|>3

Marks	Question 2 (Start a new booklet)
2	What is the equation of the line parallel to $4y = 12x + 7$ and passing through $10, 40$?
2	(b) The two straight lines $3y + \alpha x = 5$ and $12y - \alpha x = 1$ are perpendicular. Find the same
3	(c) What is the tangent of the angle that the straight line $3x + 4y + 5 = 0$ makes with the positive direction of the x axis?
	(d) Given 4(4.0) Pro 1)
	and $C(12,8)$
	Find the coordinates of D and E , the midpoints of AC and AB respective.
2	(ii) Find the gradient of AC.
	Show that the equation of the line, l , through l) perpendicular to k C is given by $x+y-12=0$
	(iv) Write down the coordinates of X , the point of intersection of the lines land $y = x$, the line perpendicular to AB through E .
2	(v) Show that A , B and C are equidistant from X .
	(vi) Write down the equation of the circle, centre X which also pass though A, B

Question 3 (Sta t a new booklet)

- (a) Writedown the exact value of:
 - (i) tan230°
 - (ii) sin!

tond = 3,180 € d € 270 then


- (1) cos ox =
- (ii) cosecol=

Ship 1 is 18.5 km from a port P on a bearing of 045°T and ship B is 26.4 km from P on a staring of 105°T. Calculate:

- (i) the distance between the ships.
- $\{aa\}$ the bearing of A from B.

BADC is a quadrilateral with:

∠ADC=90. ∠ABC=120. ∠BCA=30. ∠ACD=40 and AB=40 cm

- Show $AC = 40\sqrt{3}$ cm
- flence find the length of **CD**, correct to 1 decimal place.

Marks

Question 4 (Start a new booklet)

12 X Y 3

AX = 8, BX = 2, AY = 12 and CY = 3

(i) Show A ABOC IN ANY

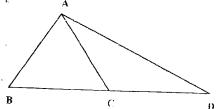
(ii) Hence show XY BC

NOT TO SCALE

F 120°

In the diagram:

AB **IF** DC, $\angle ABC = 60^{\circ}$,

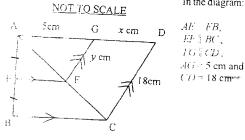

2. EFC = 120°

(i) Copy the diagram onto your booklet

(ii) Find the size of LBCF, giving reasons

NOT TO SCALE

NOT TO SCALE



 $\dot{A}BC$ is an equilateral triangle. BC is produced to D so that $BC=Dv^*$

- (i) Copy the diagram onto your booklet and mark on it all the given information
- (ii) Prove that **\(\mathbb{B40} = 90**\)

(4)

In the diagram:

- Copy the diagram into your booklet. (1)
- Find the value of x, giving reasons. (11)
- Find the value of y, giving reasons.

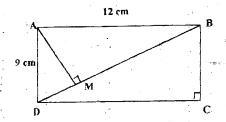
Marks Question	5	(Start a new booklet)
----------------	---	-----------------------

Marks

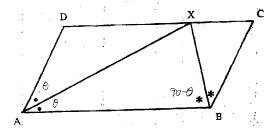
Shade the region indicated by the following inequalities: $x^2 + y^2 \le 25$ and $x + y \le 5$

The function f(x) is defined by

$$f(x) = \begin{cases} 3x & \text{if } x < -2\\ x - 4 & \text{if } -2 \le x \le 5\\ 1 & \text{if } x > 5 \end{cases}$$


- Evaluate f(-3) f(3) + f(6)
- What is the range of y = f(x)?
- (c). Consider the parabola $4y = x^2$

- Show algebraically how the parabola can be expressed in the form $(x-2)^2 = 4(y+1)$
- Write down the coordinates of the focus.
- Find the equation of the directrix.


Find an expression for the discriminant of the quadratic function $x^2 + 6x + k + 8$

For what value(s) of k is the line y = 4x + k a tangent to the parabola $y = -8 - 2x - x^2$

(a) ABCD is a rectangle with AB = 12 cm, AD = 9 cm and AM is perpendicular to BD.

- (i) Copy the diagram onto your booklet.
- (ii) Find the length of BD.
- (iii) Prove that $\triangle ABM \parallel \triangle DBA$.
- (iv) Hence find the length of BM.
- (b) ABCD is a parallelogram. XA bisects ∠DAB and XB bisects ∠CBA. X is a point on side DC.

- (i) Copy the diagram onto your booklet.
- (ii) Prove that $\triangle ADX$ is isosceles.
- (iii) Deduce that X is the midpoint of DC.
- (iv) Find the size of $\angle AXB$, giving reasons.

If α and β	3 are the roots of $3x^2$	+4x-3=0	find the value o

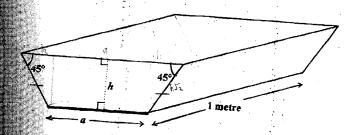
$$\frac{1}{\alpha} + \frac{1}{\alpha}$$

(1) If
$$3x + y - 5 = 0$$
 then find an expression for $y - 2$ in terms of x.

The point
$$P(1, 2)$$
 lies on the line $3x + y - 5 = 0$. Find the coordinates of the two points Q and R on the line so that their distance from P is $\sqrt{10}$ units.

- (a) Find the first derivative of the following
 - (i) $x\sqrt{1-x}$
 - (ii) $\frac{x}{1+x^2}$
 - (iii) $x^2\sqrt{x}$
- (b) If $f(x) = 6x^2 + 12x 20$, for what value(s) of x does f'(x) = 0
- (c) Write down the equation of the normal to the curve $y = x^2$ at x = -2
- (d) The function y = f(x) is defined such that $f(x+h) f(x) = 3x^2h + 6xh^2 + 2h h^2$ Evaluate f'(1) by first principles.
- (e) Find the x coordinates of the points of intersection of $y = \sin x$ and $y = \sqrt{3} \cos x$, for $0^{\circ} \le x \le 360^{\circ}$
 - Hence, by graphing $y = \sin x$ and $y = \sqrt{3}\cos x$ on the same diagram, for $0^{\circ} \le x \le 360^{\circ}$, solve $\sin x \le \sqrt{3}\cos x$, for $0^{\circ} \le x \le 360^{\circ}$

(Start a new page)


In the diagram AD = DB = 5, EC = 2AE = 8 and $\angle AED = 90^{\circ}$

Marks

.

D E

- (i) Copy the diagram into your booklet.
- (ii) Find the length of BC.

A trough of depth h metres and length 1 metre was constructed out of stainless steel sheeting. The cross section of the trough was an isosceles trapezium with the acute tights being 45° each. The width of the bottom of the trough was a metres. The area of the cross section measured 60 m².

Show that
$$a = \frac{60}{h} - h$$

Show that the amount of stainless steel, A, in m^2 , required to construct the stough was given by: $A = \frac{60}{h} - h + 2h\sqrt{2} + 120$

Question	1 8 Co	ntinued	• •			~ . > .			
(c)	Sho	w that the an-		• :	•	•		•	Ma
		w that the exp	ression 2x	-12x+19	is positive d	lefini te for a	ll values of r		'n
			••				01.1.	. :	.'2
	s.								
						. 1			
(d)		•				٠.		,	
, ,	(i) ·	$y = 5 - (x - \frac{1}{2})$	e vertical 4) ² at any	distance, D , x value, is ξ	between the given by D=	curves $y = 2x^2 - 12x + 1$	$x^2 - 4x + 8$ and -19		2
·	Gin					: :		*	
	. (ii) ·	reasons for y	he coordir	nates so that	the distance	D, is a min	imum. Giving		3
				. /			_		
								•	
,			•	*					٠
:			ENI	OF TH	IE PAPE	R		· :	: