

SYDNEY BOYS HIGH SCHOOL

YEAR 11 YEARLY EXAMINATION

SEPTEMBER 1999

MATHEMATICS

2/3 UNIT COMMON

Time allowed

2 Hours (Plus 5 minutes reading time) Examiner: C Kourtesis

DIRECTIONS TO CANDIDATES

- ALL questions may be attempted
 All necessary working should be shown in every question. Full marks may not be awarded for careless or badly arranged work.
- Approved calculators may be used.
- Hand up your answers in separate booklets. Start a new booklet for EACH question.
 - Indicate your name, class and teacher on each booklet.
- If required, additional booklets may be obtained from the Examination Supervisor upon request.

- (a) Calculate $\frac{16 \cdot 4}{8 \cdot 3 \times 1.9}$ correct to two decimal places.
- (b) Simplify $\frac{3+6m}{3}$
- (c) Solve the equation

$$3x = 8 -$$

- (d) Simplify $\sqrt{12} + \sqrt{27}$
- (e) Solve $2^{\alpha-4} = 128$
- (f) If $\tan A = 0.14$ where angle A is acute, find angle A to the nearest minute.
- (g) Simplify $(a^2b) \times \frac{a^2}{a^2}$
- (h) Solve |2x| = 30

Question 2 [12 marks]

- (a) Simplify $\frac{a}{2} + \frac{4a}{5}$
- (b) Evaluate tan $(420^{\circ}) + \cos (135^{\circ})$

- (c) If $g(x) = x^2 + 1$
 - (i) Evaluate g(4)
 - (ii) For what values of x is g(x) = 9?
- (d) On separate diagrams sketch the graphs of
 - (i) $y = 4^x$
- (ii) $y = \sqrt{4 x^2}$
- (e) Simplify

$$\frac{r^2-1}{2r+2}$$

(f) Express 0.15 as a rational number

Question 3 [11 marks]

(a) In the triangle ABC

Find:

- (i) The size of angle ABC (to the nearest minute)
- (ii) The area of the triangle ABC (to nearest cm^2)

(b) y = f(x)

State the domain and range of y = f(x)

.(c)

- (i) Find the equation of the straight line passing through points A and B
- (ii) Find the gradient of OC
- (iii) Find the shortest distance from the origin O to the straight line AB

Ouestion 4

(4)

If the triangle ABC is equilateral find the coordinates of point B.

(b) Solve
$$\sin \theta = \frac{1}{2}$$
 for $0^{\circ} \le \theta \le 360^{\circ}$

(c) Factorize:

(1)
$$8a^3 + 1$$

(ii)
$$xy + 3y - xt - 3t$$

The spinner shown below is used in a game

It is spun twice and the score recorded after each spin. Find the probability

- (a) In each of the two spins the result is 3.
- (ii) The sum of the two spins is 4.

Ouestion 5 [10 marks]

(a) On a number plane, sketch the region where

$$y \le 4 - x^2$$

and

$$x^{2} + \left(y - 4\right)^2 \le 1$$

hold simultaneously.

(b)

In the diagram above ABCDE is a quadrilateral and BCD is a triangle.

BC/IED, AB = AE, DE = BD = DC, $\angle ABD = 128^{\circ}$

- (i) Find the value of θ .
- (ii) Determine the size of angle BCD giving reasons.
- (c) A bag contains 4 red, 3 blue and 1 white ticket. Three tickets are randomly selected from the bag without replacement. Determine the probability that at least one is blue.

Question 6 [12 marks]

- (a) Differentiate the following with respect to x
 - $(1) \qquad x^4 + 3x^2 + 2$
 - (ii) $\frac{1}{3\sqrt{x}}$

(b) Use the product rule to find $\frac{dy}{dx}$ if

$$y = x(x-4)^7$$

(c) If $f(t) = \frac{t}{t^3 + 1}$ use the quotient rule to find f'(t).

3

Find the gradient of the normal to the curve $y = x^3$ at the point where x=2

(a)

In the diagram AB = 10cm, AD = DC and angle ABD =angle BCD

- (i) Prove triangle ABD is similar to triangle ACB
- (ii) Find the length of AD
- (b) For the parabola

$$(x+1)^2 = 4(y-2)^2$$

write down the

- (i) equation of the axis of symmetry
- (ii) equation of the tangent at the vertex
- (iii) coordinates of the focus
- (c) Given the quadratic equation

$$3x^2 - (k-3)x + (k-3) = 0$$
 (k a constant)

(i) Show that the discriminant is given by

$$k^2 - 18k + 45$$

- (ii) Find the values of k for which the quadratic equation has
 - (a) Two real roots
 - (β) No real roots

Question 8 [12 marks]

(a) If $\frac{7}{3-\sqrt{5}} = a + b\sqrt{5}$ (where a, b are rational)

find the values of a and b.

(b) A function is defined as

$$f(x) = \begin{cases} 6 - x^2 & \text{when } x \le 0 \\ 2^{-x} & \text{when } x > 0 \end{cases}$$

Evaluate:

- (i) f(3) + f(-4)
- (ii) f(-a) when a < 0
- (c) Sketch the graphs of the following
 - (i) y = x 1
 - (ii) y = x -

(d) Find the equation of the locus of all points which are equidistant from the x and y axes.

(e) Prove that

$$\frac{1}{\cos\theta} + \tan\theta = \frac{\cos\theta}{1 - \sin\theta}$$

Question 9 [10 marks]

(a) Solve the inequality

$$|1-4x|<4$$

(b) Find the domain of

$$y = \sqrt{x^2 - 9} + \sqrt{1 - x}$$

(c) Solve the equation

$$\cos\theta = \tan\theta$$
 for $-180'' \le \theta \le 180''$

(Answer correct to nearest minute).

- (d) A surveying party measures an east-west base line AB, where A lies to the west of B and AB=c metres in length. From A the bearing of the base of a chimney C is α ° and from B the bearing of the chimney is β °.
 - (i) Draw a neat diagram of the above.
 - (ii) Show that the perpendicular distance of the base of the chimney C from AB is given by

 $\frac{c}{\tan \alpha - \tan \beta}$