

SYDNEYBOYS HIGH SCHOOL moore park, Surry hills

2004

PRELIMINARY

HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics

General Instructions

- Reading time -5 minutes.
- Working time -2 periods.
- Write using black or blue pen.
- Board approved calculators may be used.
- All necessary working should be shown in every question if full marks are to be awarded
- Marks may NOT be awarded for messy or badly arranged work.
- Start each NEW section in a separate answer booklet.

Total Marks - 100 Marks

- Attempt Questions 1-5
- All questions are of equal value.

Examiner:
C. Kourtesis

Question 1

Marks

(a) Express $\frac{2 \pi}{9}$ radians in degrees
(b) Solve $|4-x|=1 \quad 1$
(c) Factorize $3 a^{2}-6 a \quad 1$
(d) Solve the inequality $5+3 x<7$
(e) Simplify $49^{\frac{1}{2}} \times 81^{\frac{1}{4}} \quad 1$
(f) Simplify $\log _{6} 216 \quad 1$
(g) Express with rational denominator $\frac{1}{\sqrt{6}+2} \quad 2$
(h) On the same set of axes sketch the graphs of

$$
y=\log _{10} x \text { and } y=10^{x}
$$

(i) Factorize $m^{2}-16 \quad 1$
(j) Simplify 6-a-2(3-2a) 2
(k) Find the area of the triangle $A B C \quad 2$

(1) If $f(\theta)=\tan 3 \theta+\sin 3 \theta$ find $f\left(\frac{\pi}{3}\right)$ in exact form $\quad 2$
(m) Factorize $x^{2}-5 x+6 \quad 1$
(n) Simplify $t+\frac{2 t-1}{3}$

Question 2

Marks

(a) The point $(3 k, 2)$ lies on the line $2 x-3 y=10$

Find the value of k
(b) Solve the equation $\tan 2 \theta=1$ for $0 \leq \theta \leq 2 \pi$
(c) Evaluate $\frac{2+\pi}{2-\pi} \quad$ to 1 decimal place
(d) Find the derivative of
(i) $4 x^{9}-6 x+1 \quad 1$
(ii) $(5 x+6)^{10}$
(iii) $\frac{x^{3}+10}{x^{2}}$
(e) Use the quotient rule to differentiate

$$
y=\frac{x}{3 x+2}
$$

(f) Find integers a and b such that

$$
(5-\sqrt{2})^{2}=a+b \sqrt{2}
$$

(g) For the parabola $(x-2)^{2}=4 y$ find the coordinates of the
(i) vertex 1
(ii) focus 1
(h) Write down the roots of the equation 1

$$
(1-3 x)(x+10)=0
$$

(i) Sketch the following graphs on separate number plane graphs, indicating any intercepts with the coordinate axes
(i) $y=x+1$
(iii) $y^{2}=-x$
(ii) $y=\frac{4}{x}$
(iv) $y=2(x+3)^{2}$

Question 3

Marks
(a) Given that $\log a=0.86$ and $\log b=0.42$ evaluate
(i) $\quad \log \left(\frac{a}{b}\right)$
(ii) $\log \sqrt{a b}$
(b) If α and β are the roots of $3 x^{2}-2 x+1=0$

Evaluate:
(i) $\alpha+\beta$
(ii) $\alpha \beta$
(iii) $\frac{1}{\alpha^{2} \beta}+\frac{1}{\beta^{2} \alpha}$
(c) The roots of the equation $m x^{2}-x+n=0$ are -2 and 3 .

2
Find the values of m and n.
(d) Find $\quad \lim _{n \rightarrow 10} \frac{n^{2}-100}{n-10}$
(e) Solve $|3 x+1|>8 \quad 2$
(f) If $\sqrt[x]{m}=n^{3} \quad$ express x in terms of m and $n \quad 2$
(g) The lines $4 y=b x+3$ and $y+2 x=1$ are parallel. Find b. 2
(h) Solve the inequality $\theta^{2}-4 \theta<0 \quad 2$
(i) Find the equation of the tangent to the curve 2 $y=x^{2}-2 x$ at the point where $x=1$

Question 4

Marks

(a) If $3 x^{2}+4 x+5 \equiv A(x+1)^{2}+B(x+1)+C$ find the value of the 2 constants A, B and C.
(b) Given $P(x)=k-3 k x-x^{2}$ find the values of k for which $P(x)<0$ for all x.
(c) Solve the equation $x^{4}-10 x^{2}+9=0$
(d) The vertex of the parabola $y=x^{2}+b x+c$ is at the point (2,3). Find the values of b and c.
(e) The locus of a point P is described by the equation

$$
x^{2}+y^{2}-4 x+2 y=0
$$

Find the centre and radius.
(f) (i) Sketch the graph of $y=x^{2}-6$ and label all intercepts with the axes.
(ii) On the same set of axes carefully sketch the graph of $y=|x|$
(iii) Find the x coordinates of the two points where the graphs intersect
(iv) Hence solve the inequality $x^{2}-6 \leq|x|$
(g) Sketch the region in the number plane which satisfies both the inequalities $y \leq \sqrt{16-x^{2}}$ and $x-y \geq 4$.
(h) If $\tan A+\sec A=2$, evaluate $\cos A$

Question 5

(a) Use the product rule to differentiate

$$
\left(x^{2}+5\right)(1-4 x)
$$

(b) Given the function $f(x)=\frac{1}{\sqrt{3-x^{2}}}$ find the:
(i) domain
(ii) range
(c) Show that $h(x)=x^{3}-x$ is an odd function
(d) For the triangle $A B C$

Show that
$\frac{\sqrt{11}}{6}<\cos \theta<1$

(e) $\triangle A B C$ is right-angled at B and $D E$ is perpendicular to $A C$ (see diagram)
(i) Prove that $\triangle A B C$ and $\triangle C D E$ are similar
(ii) Prove that $B C \times C E=\mathrm{AC} \times C D$
(iii) Prove that:
$D E^{2}=A D \times D C-B E \times E C$

(f) If α and β are the roots of $x^{2}+5 x+7=0$, form the equation whose roots are $(\alpha-\beta)^{2}$ and $(\alpha+\beta)^{2}$

SYDNEYBOYS HIGH SCHOOL
 MOORE PARK, SURRY HILLS

2004

PRELIMINARY

HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics

Sample Solutions

Question	Marker
$\mathbf{1}$	Mr Fuller
$\mathbf{2}$	Mr Boros
$\mathbf{3}$	Mr Dowdell
$\mathbf{4}$	Mr Dunne
$\mathbf{5}$	Ms Nesbitt

Question 1:
(a) $\frac{2 \pi}{9} \times \frac{180}{\pi}=40^{\circ}$
(b) $|4-x|=1$

$$
\begin{array}{rlrlrl}
4-x & =1 & \text { or } & & -(4-x) & =1 \\
-x & =-3 & & -4+x & =1 \\
x & =3 & x & =5
\end{array}
$$

(c) $3 a^{2}-6 a=3 a(a-2)$
(d) $5+3 x<7$

$$
3 x<2
$$

$$
x<\frac{2}{3}
$$

(e) $49^{\frac{1}{2}} \times 81^{\frac{1}{4}}=7 \times 3$

$$
=21
$$

(f) $\log _{6} 216=\frac{\ln 216}{\ln 6}$ or let $\log _{6} 216=x$

$$
\begin{array}{rlrl}
216 & =6^{x} \\
6^{3} & =6^{x} & \text { (j) } 6-a-2(3-2 a) & =6-a-6+4 a \\
& =3 a
\end{array}
$$

(g) $\frac{1}{\sqrt{6}+2} \times \frac{\sqrt{6}-2}{\sqrt{6-2}}=\frac{\sqrt{6}-2}{6-4}$

$$
=\frac{\sqrt{6}-2}{2}
$$

(i) $m^{2}-16=(m-4)(m+4)$
(h)

NB The line $y=x$ is a line of symmetry for the two graphs.
The y axis is a vertical asymptote for the log graph. The x axis is a horizontal asymptote for the exponential graph.
$(1,10)$ would lie on the exponential graph and $(10,1)$ would be on the log graph.

(k) $\angle B C A=30^{\circ} \quad\left(\angle\right.$ sum of a $\left.\Delta=180^{\circ}\right)$

Area $=\frac{1}{2} \times 6 \times 10 \times \sin 30^{\circ}$
$=15$ square centimetres
(l) $f(\theta)=\tan 3 \theta+\sin 3 \theta$

$$
\begin{aligned}
f\left(\frac{\pi}{3}\right) & =\tan 3\left(\frac{\pi}{3}\right)+\sin 3\left(\frac{\pi}{3}\right) \\
& =\tan \pi+\sin \pi \\
& =0
\end{aligned}
$$

(m) $x^{2}-5 x+6=(x-3)(x-2)$
(n) $t+\frac{2 t-1}{3}=\frac{3 t+2 t-1}{3}$

$$
=\frac{5 t-1}{3}
$$

12
(a)

$$
\begin{align*}
& 2 \times 3 k-3 \times 2=10 \\
& 6 k-6=10 \\
& 6 k=16 \\
& k=\frac{16}{6}=\frac{8}{3}=2 \frac{2}{3} \tag{2}
\end{align*}
$$

(b)

$$
\begin{align*}
& \tan 2 \theta=1 \quad \frac{f^{\prime}}{A} \\
& 2 \theta=45^{\circ}, 225^{\circ}, 45+360,225+360 \\
& 2 \theta=45,125,405,585^{\circ} \\
& \theta=22 \frac{1}{2}^{\circ}, 112 \frac{1}{2}^{\circ}, 202 \frac{2}{2}^{\circ}, 292 \frac{1}{2}^{\circ} \tag{2}
\end{align*}
$$

in radians $\frac{\pi}{8}, \frac{5 \pi}{8}, \frac{9 \pi}{8}, \frac{13 \pi}{8}$
c) -4.5 .(1)
(d) (i) $36 x^{8}-6$
(ii) $10(5 x+6)^{9}+5=50(5 x+6)$
(iii)

$$
\begin{align*}
\frac{x^{3}}{x^{2}}+\frac{10}{x^{2}} & =x+10 x^{-2} \\
y^{\prime} & =1+10 x^{-2} x^{-3} \\
& =1-\frac{20}{x^{3}} \tag{2}
\end{align*}
$$

(e) $y^{\prime}=\frac{(3 x+2) x 1-x \times 3}{(3 x+2)^{2}}=\frac{3 x+2-3 x}{(3 x+2)^{2}}=\frac{2}{(3 x+2)^{2}}$
(f) LHS/ $25-10 \sqrt{2}+2=27-10 \sqrt{2}$

So

$$
\begin{aligned}
& a=27 \\
& b=-10
\end{aligned}
$$

(9) $(y-2)^{2}=4(y-0)$
matchas with $(x-k)^{2}=4 a(y-k)$

$$
\begin{aligned}
& V(2,0)(1) \\
& a=1 \\
& F(2,1)(1)
\end{aligned}
$$

(h) let

$$
1-3 x=0
$$

let $x+10=0$
$3 x=1$

$$
x=\frac{1}{3}
$$

(i)
(i) (i)

(ii)

(iii) $y^{2}=-x$.

Q3
(a) (i)

$$
\begin{aligned}
\log \left(\frac{a}{b}\right) & =\log a-\log b \\
& =0.86-0.42 \\
& =0.44
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\log \sqrt{a b} & =\frac{1}{2} \log (a b) \\
& =\frac{1}{2}(\log c+\log b) \\
& =\frac{1}{2}(0.86+0.42) \\
& =0.64
\end{aligned}
$$

(b) (i) $\alpha+\beta=-\frac{-2}{3}$

$$
=\frac{2}{3}
$$

(ii) $\alpha \beta=\frac{1}{3}$
(iii)

$$
\begin{align*}
\frac{1}{\alpha^{2} \beta}+\frac{1}{\beta^{2} \alpha} & =\frac{\beta+}{\alpha^{2} \beta} \\
& =\frac{\left(\frac{2}{3}\right)}{\left(\frac{1}{3}\right)^{2}} \\
& =\frac{2}{3} \times \frac{9}{1} \tag{2}\\
& =6
\end{align*}
$$

(c)

$$
\begin{align*}
& m x^{2}-x+n \\
& -2+3=\frac{1}{m} \\
& \therefore 1=\frac{1}{m} \\
& \therefore m=1 \\
& -2 \times 3=\frac{n}{m} \\
& \therefore n=-6 \tag{2}
\end{align*}
$$

(d) $\lim _{n \rightarrow 10} \frac{(n-10)(n+10)}{n-10}$

$$
\begin{aligned}
& =\lim _{n \rightarrow 10}(n+10) \\
& =20
\end{aligned}
$$

(e) $|3 x+1|>8$

$$
\begin{array}{rlrl}
\therefore 3 x+1>8 & \text { or } & 3 x+1 & <-8 \\
\therefore 3 x>7 & 3 x & <-9 \\
x>2 \frac{1}{3} & x & <-3 .(2
\end{array}
$$

(f)

$$
\begin{aligned}
& m^{\frac{1}{x}}=n^{3} \\
& \therefore \frac{1}{x} \log m=3 \log n . \\
& \therefore \frac{1}{x}=\frac{3 \log n}{\log m} \\
& \therefore x=\frac{\log m}{3 \log n}\left(=\frac{1}{3} \log _{n} n\right.
\end{aligned}
$$

(g)

$$
\begin{align*}
& m_{1}=\frac{b}{4} \quad m_{2}=-2 \\
& \therefore \frac{b}{4}=-2 \tag{2}\\
& \therefore b=-8 \\
& \theta^{2}-4 \theta<0 \\
& \theta(\theta-4)<0 \\
& \therefore 0<\theta<4
\end{align*}
$$

(h)
(e)
(i)

$$
\begin{aligned}
& y=x^{2}-2 x \\
& y^{\prime}=2 x-2
\end{aligned}
$$

whe- $x=1 \quad y=-1$

$$
y^{\prime}=0
$$

\therefore Eqp of tangent is $y=-1$.

Four

$$
\text { e) } \begin{aligned}
3 x^{2}+4 x+5 & \equiv A\left(x^{2}+2 x+1\right)+B x+B+C \\
& =A x^{2}+(2 A+B) x+A+B+C
\end{aligned}
$$

Here $A=3$

$$
\begin{aligned}
& 2 A+B=4 \Rightarrow B=-2 \\
& A+B+C=5 \Rightarrow C=4
\end{aligned}
$$

6)

$$
\begin{aligned}
P(x) & =k-3 h x-x^{2} \\
& =-x^{2}-3 h x+k
\end{aligned}
$$

If $P(x) \leqslant 0$ then

$$
b^{2}-4 a c \leq 0
$$

$$
9 h^{2}+4 h \leq 0
$$

$$
k(9 h+4) \leq 0
$$

$$
-\frac{4}{9} \leq 6 \leq 0
$$

c)

$$
\begin{aligned}
& x^{4}-10 x^{2}+9=0 \\
& \left(x^{2}-1\right)\left(x^{2}-9\right)=0 \\
& x^{2}=1,9 \\
& x= \pm 1, \pm 3
\end{aligned}
$$

d)

$$
\begin{aligned}
y & =x^{2}+b x+c \\
y^{\prime} & =2 x+b \\
2 x+b & =0 \text { when } x=2 \\
k & =-4
\end{aligned}
$$

Then $y=x^{2}-4 x+c$
Since $(2,3)$ hes or cure

$$
\begin{aligned}
& 3=4-8+c \\
& c=7
\end{aligned}
$$

e)

$$
\begin{gathered}
x^{2}-4 x+4+y^{2}+2 y+1=5 \\
(x-2)^{2}+(y+1)^{2}=5
\end{gathered}
$$

Circler centime $(2,-1)$ radixes $\sqrt{5}$
f)

when $y=x$

$$
\begin{gathered}
x=x^{2}-6 \\
x^{2}-x-6=0 \\
(x-3)(x+2)=0 \\
x=3
\end{gathered}
$$

$$
x=3 \text { only }
$$

for might hand breach of
Hence $(3,3)$
When $\left.y=-x \begin{array}{cc}\text { (left hand } \\ \text { pouch }\end{array}\right)$

$$
\begin{aligned}
& -x=x^{2}-6 \\
& x^{2}+x-6=0 \\
& (x+3)(x-2)=0 \\
& x=-3 \text { ONLY }
\end{aligned}
$$

Here $(-3,3)$
From whetch

$$
\begin{array}{r}
x^{2}-6 \leq|x| \\
\text { When }-3 \leq x \leq 3
\end{array}
$$

9)

L)

$$
\begin{aligned}
& \tan A+\sec A=2 \\
& \frac{\sin A}{\cos A}+\frac{1}{\cos A}=2 \\
& \frac{\tan A+1}{\cos A}=2 \\
& 1+\sin A=2 \cos A \\
& \operatorname{sen} A=2 \cos A-1 \\
& \sqrt{1-\cos ^{2} A}=2 \cos A-1 \\
& 1-\cos ^{2} A=4 \cos A-4 \cos A+1 \\
& 5 \cos ^{2} A-4 \cos A=0 \\
& \cos ^{2} A(5 \cos A-4)=0
\end{aligned}
$$

Likely rolutionis ane

$$
\cos A=0, \frac{4}{5}
$$

Clech

$$
\text { If } \cos A=\frac{4}{5}
$$

$$
\tan A+\sec A=\frac{3}{4}+\frac{5}{4}
$$

$$
=2
$$

$\cos A=\frac{4}{5}$ us alulions

$$
\text { 1. } \begin{aligned}
\cos A & =0 \\
A & =90^{\circ}
\end{aligned}
$$

$$
\tan A+\operatorname{sen} A \neq 2
$$

Sence $\tan 90^{\circ}$ u unde fired

$$
\cos A=0 \text { is not }
$$ a solution.

Questions
(a)

$$
\begin{aligned}
f(x) & =(1-4 x) \times 2 x+\left(x^{2}+5\right) \times-4 \\
& =2 x-8 x^{2}-4 x^{2}-20 \\
& =-12 x^{2}+2 x-20
\end{aligned}
$$

(b) Domain: $-\sqrt{3}<x<\sqrt{3}$ Range
(c) $h(-x)=-x^{3}+x=-h(x)$
$\therefore h(x)$ is an odd function
(d) as 5 cm is not the longest side, $\theta<90^{\circ}$

$$
\begin{aligned}
& 5^{2}=6^{2}+x^{2}-2 \times 6 \times x \cos \theta \quad(\cos \text { rule }) \\
& x^{2}-12 x \cos \theta+11=0
\end{aligned}
$$

Solution if $\Delta \geqslant 0$

$$
\begin{aligned}
& \frac{12^{2} \cos ^{2} \theta-4 \times 11}{2} \geq 0 \\
& 72 \cos ^{2} \theta-22 \geq 0 \\
& \cos ^{2} \theta \geq \frac{11}{36} \\
& \cos \theta \geq \frac{\sqrt{11}}{6} \text { or } \cos \theta \leq-\frac{\sqrt{1}}{6}
\end{aligned}
$$

$\sqrt{11} \leqslant \cos \theta$ in list quadrant
Cos \& <1 for all values of θ in is quadrat

$$
\therefore \quad \frac{\sqrt{11}}{6} \leq \cos \theta<1
$$

(e) (1)

$$
\begin{gathered}
\text {) In } \triangle A B C \text { and } \triangle C D E \angle A C B \text { is common } \\
\angle A B C=\angle E D C=90^{\circ} \text { (given) }
\end{gathered}
$$

$\therefore \triangle A B C$ is similar to $\triangle D E C$ (equiangular)
(11) In $\triangle A B C$ and $\triangle C D E \frac{B C}{D C}=\frac{A C}{C E}$ (Corresponduy sides)

$$
\therefore B C \times C E=A C \times C D
$$

(iii)

$$
\begin{aligned}
& =A D \times D C-B E \times E C \\
& =(A C-D C) D C-(B C-E C) E C \\
& =A C \cdot C D-D C^{2}-B C \cdot E C+E C^{2} \\
& =C E^{2}-D C^{2}+A C \cdot D-B C \cdot E C \\
& =D E^{2} \text { as required } \quad(A C \cdot C D=B C \cdot E C \text { foom(ii)) }
\end{aligned}
$$

(f)

$$
\begin{aligned}
& \alpha+\beta=-\frac{b}{a}=-5, \alpha \beta=\frac{c}{a}=7 \\
& (\alpha+\beta)^{2}=25 \\
& (\alpha-\beta)^{2}=(\alpha+\beta)^{2}-4 \alpha \beta \\
& =25-28=-3
\end{aligned}
$$

required equation $\left[x-(\alpha-\beta)^{2}\left[x-(\alpha+\beta)^{2}\right]\right.$

$$
\begin{aligned}
& =(x+3)(x-25) \\
& =x^{2}-22 x-75
\end{aligned}
$$

