

SEPTEMBER 2005

Yearly Examination

YEAR 11

Mathematics

General Instructions

- Reading time 5 minutes.
- Working time 90 minutes.
- Write using black or blue pen.
- Board approved calculators may be used.
- All necessary working should be shown in every question if full marks are to be awarded.
- Marks may **NOT** be awarded for messy or badly arranged work.
- Start each **NEW** section in a separate answer booklet.

Total Marks - 80 Marks

- Attempt Questions 1 4
- All questions are of equal value.

Examiner: P. Bigelow

Total marks – 80 Attempt Questions 1 - 4 All questions are of equal value

Answer each SECTION in a SEPARATE writing booklet.

		Section A	Marks	
Question 1 (20 marks)				
(a)		Express 0.0407 in scientific notation	1	
(b)		If $\sqrt{54} = a\sqrt{6}$ find a	1	
(c)		If $f(x) = 4x - 7$, find $f(a+1)$	1	
(d)		Solve		
	(i)	$\frac{2x}{3} = -4$	1	
	(ii)	2x(x-4) = 0	2	
	(iii)	$\frac{4}{y-2} = 3$	1	
(e)		If $\cos A = 0.407$ find <i>A</i> , where <i>A</i> is an acute angle.	2	
(f)		Evaluate $\frac{4 \cdot 2^3 - 6 \cdot 1^2}{\sqrt{4 \cdot 6} - 0 \cdot 3}$ correct to 1 decimal place.	1	
(g)		Express $\frac{2}{\sqrt{3}-1}$ with a rational denominator in <i>simplest</i> form.	2	
(h)		Factorise fully:		
	(i)	$2a^2 - 8$	2	
	(ii)	$2a^2 - 2a + ac - c$	2	
	(iii)	$4y^2 - 15y - 4$	2	
(i)		Express $0.\dot{3}\dot{6}$ as a fraction in <i>simplest</i> form.	2	

Question 2 (20 marks)

(i)
$$\lim_{x \to 4} \frac{x^2 + x - 20}{x - 4}$$
 1

(ii)
$$\lim_{x \to \infty} \frac{4 - x + 2x^2}{x^2 + 7x - 9}$$
 1

(i)
$$8^x = 2^{x-4}$$
 1

(ii)
$$\log_x 36 = 2$$
 1

(iii)
$$\log_3 \frac{\sqrt{3}}{9} = x$$
 1

(c) Differentiate the following
(i)
$$y = (7 - 2x)^6$$

(ii)
$$y = 7x^{-3} + 4x - 17$$
 1

(iii)
$$f(x) = x\sqrt{x-2}$$
 2

(iv)
$$f(x) = \frac{x+4}{x+5}$$
 2

(d) Write down a quadratic equation with roots 4 and -7. 2
(e) If
$$f(x) = \sqrt{x^2 + 16}$$
 find $f'(3)$. 2

(f) Find the equation of the tangent to
$$y = x^2 + 3x + 4$$
 at the point 2
where $x = 0$.

(g)For the parabola
$$(x+2)^2 = 4y-8$$
, find the:(i)coordinates of the vertex;(ii)coordinates of the focus;(iii)equation of the directrix.1

Question 3 (20 marks)				
(a)		Solve the following pair of simultaneous equations	3	
		2x - y - 7 = 0 $3x + 2y - 14 = 0$		
(b)		Expand and simplify $(a+1)^2 - (a+1)(a-1)$	3	
(c)		Use the quadratic formula to solve $x^2 + 4x - 6 = 0$. Express your answers in <i>simplest surd</i> form.	2	
(d)		Sketch the following on separate number planes:		
	(i)	3x - 2y + 12 = 0;	1	
	(ii)	$y = \frac{4}{x};$	1	
	(iii)	$y = x^2 - 4x + 3.$	1	
(e)		Write down the exact values of:		
	(i)	tan 30°;	1	
	(ii)	cos 210°.	1	
(f)		Find to the nearest degree, the angle of depression of a boat 300 metres out to sea, from the top of a vertical cliff of height 50 metres.	3	
(g)		If $5^x = 7$ find <i>x</i> correct to three decimal places.	2	
(h)		Solve $2\sin x + 1 = 0$ for $0^{\circ} \le x \le 360^{\circ}$	2	

Marks

State the domain of the following:

Question 4 (20 marks)

(a)

(i)
$$y = \frac{2}{x^2 - 1}$$

(ii) $y = \sqrt{2 - x}$
(i) State whether the following are ODD, EVEN or NEITHER.
Justify your answer.
(i) $f(x) = 1 - x^2$
(ii) $f(x) = 1 - x^2$
(ii) $f(x) = -3x - x^2$
(iii) $f(x) = -3x - x^2$
(iv) $f(x) = -3|x|$
(c) Find the centre and radius of the circle
 $x^2 + y^2 - 4x + 6y - 3 = 0$
(d) (i) Graph the *intersection* of the following regions on a number
plane:
 $y \ge 2x + 6$, $x \ge -3$, $y < 8$
(ii) Find the area of this region.
(e) A ship at X is 20 nautical miles from a lighthouse L, which is
on a bearing of 025°T. The ship then sails due west to Y, from
which the bearing of the lighthouse is 055°T.

Copy the diagram to your answer booklet.

- (i) Show that $\angle XLY = 30^{\circ}$.
- (ii) Show that $XY = 10 \operatorname{cosec} 35^\circ$ and hence find the distance sailed 3 in nautical miles, correct to 1 decimal place.

End of paper

2

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

SEPTEMBER 2005

Yearly Examination

YEAR 11

Mathematics

Sample Solutions

Marker AW

e)
$$\cos A = 0.407$$

 $\frac{1}{20} A = 65^{\circ} 59'$

f)
$$\frac{4 \cdot 2^{3} - 6 \cdot 1^{2}}{\sqrt{4 \cdot 6} - 0 \cdot 3} = \frac{20 \cdot 0}{20 \cdot 0}$$

9)
$$\frac{2}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1} = \frac{2\sqrt{3}+2}{3-1}$$

= $\sqrt{3}+1$

h) i)
$$2a^{3}-8=2(a^{2}-4)$$

= $2(a+2)(a-2)$
i) ii) $2a^{2}-2a+ac-c$
= $2a(a-1)+c(a-1)$.
= $(2a+c)(a-1)$

$$\begin{array}{c} \underbrace{\operatorname{Question} \mathcal{A}}_{x \neq 4} & \begin{array}{c} (2) & 1 \end{pmatrix} \underbrace{\operatorname{dy}}_{x \neq 4} = -12 (7 - 2x)^{5} \\ (3)) \lim_{x \neq 4} \frac{x^{2} + x - 20}{x^{2} + 4} \\ = \lim_{x \neq 4} \frac{(x + 5)(x - 4)}{(x - 4)} \\ = \frac{9}{(1)} \\ = \frac{9}{(1)} \\ = \frac{9}{(1)} \\ = \frac{9}{(1)} \\ = \frac{1}{\sqrt{x^{2} + 1x^{-9}}} \\ = \frac{1}{\sqrt{x^{2}$$

QuESTION 3:
a)
$$2x - y - 7 = 0$$

 $3x + 2y - 14 = 0$
 $2x0$
 $4x - 2y - 14 = 0$
 $3 + 2$
 $7x - 28 = 0$
 $x = \pm 4$
 $3 + 2$
 $7x - 28 = 0$
 $x = \pm 4$
 $3 + 2$
 $7x - 28 = 0$
 $x = \pm 4$
 $3 + 2$
 $y = \pm 1$
Solution is $2 \pm 4, y = 1$
 $4 + 1)^2 - (a + 1)(a - 1)$
 $= a^2 + 2a + 1 - a^2 + 1$
 $= 2a + 2$
 $= 2(a \pm 1)$
c) $x = -b \pm \sqrt{b^2 - 4ac}$
 $2a$
 $= -4 \pm \sqrt{16 \pm 24}$
 $2a$
 $= -4 \pm \sqrt{16 \pm 24}$
 $2a$
 $= -2 \pm \sqrt{10}$
e) i) tan $30^\circ = \frac{1}{\sqrt{3}}$
i) $\cos 210^\circ = -\frac{\sqrt{3}}{2}$

E

$$\frac{QUESTION \ 3(cont)}{9) \ 5^{\times} = 7}$$

$$\log_{5} 7 = 5c.$$

$$\delta_{0} \ x = \frac{\log_{10} 7}{\log_{10} 5}.$$

$$= 1.209 \ (3dp)$$

h)
$$2\sin x + 1 = 0$$

 $\sin x = -\frac{1}{2}$
 $x = 210^{\circ}, 330^{\circ}$

QUESTION 4
a) i)
$$xer(R: z \neq 1)$$

ii) $xer(R: x < 2$
b) $f(x) = 1 - x^{2}$
 $f(x) = 1 - (-x^{2})$
 $= f(x)$
 $s_{0} \in V \in N \quad FUNCTION$
ii) $f(x) = \frac{x}{1 + x^{2}}$
 $f(-x) = -\frac{x}{1 + x^{2}}$
 $f(-x) = -\frac{x}{1 + x^{2}}$
 $f(-x) = 3x - x^{2}$
 $f(-x) = 3x - x^{2}$
 $f(-x) = 3x - x^{2}$
 $f(-x) = -3|x|$
 $f($

