SEPTEMBER 2005

Yearly Examination

YEAR 11

Mathematics

General Instructions

- Reading time - 5 minutes.
- Working time - 90 minutes.
- Write using black or blue pen.
- Board approved calculators may be used.
- All necessary working should be shown in every question if full marks are to be awarded.
- Marks may NOT be awarded for messy or badly arranged work.
- Start each NEW section in a separate answer booklet.

Total Marks - 80 Marks

- Attempt Questions 1-4
- All questions are of equal value.

Examiner: P. Bigelow

Answer each SECTION in a SEPARATE writing booklet.

Section A

Marks
Question 1 (20 marks)
(a) Express 0.0407 in scientific notation
(b) If $\sqrt{54}=a \sqrt{6}$ find a $\quad 1$
(c) If $f(x)=4 x-7$, find $f(a+1)$
(d) Solve
(i) $\frac{2 x}{3}=-4$
(ii) $2 x(x-4)=0$
(iii) $\frac{4}{y-2}=3$
(e) If $\cos A=0.407$ find A, where A is an acute angle.
(f) Evaluate $\frac{4 \cdot 2^{3}-6 \cdot 1^{2}}{\sqrt{4 \cdot 6}-0 \cdot 3}$ correct to 1 decimal place.
(g) Express $\frac{2}{\sqrt{3}-1}$ with a rational denominator in simplest form. $\quad 2$
(h) Factorise fully:
(i) $2 a^{2}-8$
(ii) $2 a^{2}-2 a+a c-c$
(iii) $4 y^{2}-15 y-4$

Express $0 . \dot{3} \dot{6}$ as a fraction in simplest form.

Question 2 (20 marks)
(a)

Find
(i) $\lim _{x \rightarrow 4} \frac{x^{2}+x-20}{x-4}$

1
(ii) $\lim _{x \rightarrow \infty} \frac{4-x+2 x^{2}}{x^{2}+7 x-9}$
(b) Find x in the following:
(i) $8^{x}=2^{x-4}$
(ii) $\log _{x} 36=2$
(iii) $\quad \log _{3} \frac{\sqrt{3}}{9}=x$
(c) Differentiate the following
(i) $y=(7-2 x)^{6}$
(ii) $y=7 x^{-3}+4 x-17$
(iii) $\quad f(x)=x \sqrt{x-2}$
(iv) $\quad f(x)=\frac{x+4}{x+5}$
(d) Write down a quadratic equation with roots 4 and -7 .
(e)

If $f(x)=\sqrt{x^{2}+16}$ find $f^{\prime}(3)$.
(f) Find the equation of the tangent to $y=x^{2}+3 x+4$ at the point where $x=0$.
(g) For the parabola $(x+2)^{2}=4 y-8$, find the:
(i) coordinates of the vertex;
(ii) coordinates of the focus;
(iii) equation of the directrix.

Question 3 (20 marks)
(a) Solve the following pair of simultaneous equations

$$
\begin{array}{r}
2 x-y-7=0 \\
3 x+2 y-14=0
\end{array}
$$

(b) Expand and simplify $(a+1)^{2}-(a+1)(a-1)$
(c) Use the quadratic formula to solve $x^{2}+4 x-6=0$.

Express your answers in simplest surd form.
(d) Sketch the following on separate number planes:
(i) $3 x-2 y+12=0$;
(ii) $y=\frac{4}{x}$;
(iii) $y=x^{2}-4 x+3$.
(e) Write down the exact values of:
(i) $\tan 30^{\circ}$;
(ii) $\cos 210^{\circ}$.
(f) Find to the nearest degree, the angle of depression of a boat 300 metres out to sea, from the top of a vertical cliff of height 50 metres.
(g) If $5^{x}=7$ find x correct to three decimal places.
(h) \quad Solve $2 \sin x+1=0$ for $0^{\circ} \leq x \leq 360^{\circ}$

Question 4 (20 marks)
(a) State the domain of the following:
(i) $y=\frac{2}{x^{2}-1}$
(ii) $y=\sqrt{2-x}$
(b) State whether the following are ODD, EVEN or NEITHER. Justify your answer.
(i) $\quad f(x)=1-x^{2}$
(ii) $f(x)=\frac{x}{1+x^{2}}$
(iii) $f(x)=-3 x-x^{2}$
(iv) $\quad f(x)=-3|x|$
(c) Find the centre and radius of the circle

$$
x^{2}+y^{2}-4 x+6 y-3=0
$$

(d) (i) Graph the intersection of the following regions on a number plane:

$$
y \geq 2 x+6, \quad x \geq-3, \quad y<8
$$

(ii) Find the area of this region.
(e) A ship at X is 20 nautical miles from a lighthouse L, which is on a bearing of $025^{\circ} \mathrm{T}$. The ship then sails due west to Y, from which the bearing of the lighthouse is $055^{\circ} \mathrm{T}$.

Copy the diagram to your answer booklet.
(i) Show that $\angle X L Y=30^{\circ}$.
(ii) Show that $X Y=10 \operatorname{cosec} 35^{\circ}$ and hence find the distance sailed in nautical miles, correct to 1 decimal place.

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

SEPTEMBER 2005

Yearly Examination

YEAR 11

Mathematics

Sample Solutions

Marker AW

QuESTION 1200524 Mathematics.-Solutions
a) $0.0407=4.07 \times 10^{-2}$
b) $\sqrt{54}=3 \sqrt{6} \quad \therefore a=3$
c)

$$
\begin{aligned}
f(a+1) & =4(a+1)-7 \\
& =4 a-3
\end{aligned}
$$

d)

$$
\text { i) } \begin{aligned}
\frac{2 x}{3} & =-4 . \\
2 x & =-12 . \\
x & =-b
\end{aligned}
$$

ii) $2 x(x-4)=0$.
$x=0$ or $x=4$
III)

$$
\begin{aligned}
& \frac{4}{y-2}=3 \\
& 4=3(y-2) \\
& 4=3 y-6 \\
& y=\frac{10}{3}=3 \frac{1}{3}
\end{aligned}
$$

e)

$$
\begin{aligned}
& \cos A=0.407 \\
& \therefore=65^{\circ} 59^{\prime} \\
& \therefore
\end{aligned}
$$

f) $\frac{4 \cdot 2^{3}-6 \cdot 1^{2}}{\sqrt{4 \cdot 6}-0.3}=20 \cdot 0$.
g) $\frac{2}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1}=\frac{2 \sqrt{3}+2}{3-1}$:

$$
=\sqrt{3}+1
$$

h) i)

$$
\begin{aligned}
2 a^{3}-8 & =2\left(a^{2}-4\right) \\
& =2(a+2)(a-2)
\end{aligned}
$$

i) ii)

$$
\begin{aligned}
& 2 a^{2}-2 a+a c-c \\
= & 2 a(a-1)+c(a-1) \\
= & (2 a+c)(a-1)
\end{aligned}
$$

h)

$$
\begin{aligned}
& 4 y^{2}-15 y-4 \\
= & 4 y^{2}-16 y+y+4 \\
= & 4 y(y-4)+(y-4) \\
= & (4 y+1)(y-4) .
\end{aligned}
$$

i) Let $x=0.36 \ddot{36}$

$$
\begin{align*}
100 x & =36 \cdot 3636 \tag{2}\\
99 x & =36 \tag{1}\\
x & =\frac{36}{99}=\frac{12}{33}
\end{align*}
$$

QUESTION 2.
a)i)

$$
\text { i) } \begin{align*}
& \lim _{x \rightarrow 4} \frac{x^{2}+x-20}{x-4} \\
= & \lim _{x \rightarrow 4} \frac{(x+5)(x-4)}{(x-4)} \\
= & 9 \tag{1}
\end{align*}
$$

$$
\text { ii) } \begin{align*}
& \lim _{x \rightarrow \infty} \frac{4-x+2 x^{2}}{x^{2}+7 x-9} \\
&= \lim _{x \rightarrow \infty}\left[\frac{\frac{4}{x^{2}}-\frac{x}{x^{2}}+\frac{2 x^{2}}{x^{2}}}{\frac{x^{2}}{x^{2}}-\frac{1 x}{x^{2}}-\frac{9}{x^{2}}}\right] \tag{2}\\
&= \lim _{x \rightarrow \infty}\left[\frac{\frac{4}{x^{2}}-\frac{1}{x}+2}{1-\frac{1}{x}-\frac{9}{x}}\right] \tag{1}\\
& \begin{cases}\left\{\lim _{x \rightarrow \infty} \lim _{x} \frac{4}{x^{2}}\right. & =0\} \\
= & \frac{2}{1}=2\end{cases} \tag{2}
\end{align*}
$$

b) 1)

$$
\text { b) 1) } \begin{align*}
8^{x} & =2^{x-4} \\
\therefore 2^{3 x} & =2^{x-4} \\
3 x & =x-4 \\
x & =-2 \tag{1}
\end{align*}
$$

11)

$$
\begin{aligned}
\log _{x} 36 & =2 \\
\therefore x^{2} & =36 \\
x & = \pm 6
\end{aligned}
$$

iii)

$$
\begin{gathered}
\text { iii) } \log _{3} \frac{\sqrt{3}}{9}=x \\
\log _{3} \sqrt{3}-\log _{3} 9=x \\
\frac{1}{2}-2=x \\
x=-1 \frac{1}{2}
\end{gathered}
$$

iv)

$$
\begin{aligned}
f^{\prime}(x) & =\frac{v u^{\prime}-u v^{\prime}}{v^{2}} \\
& =\frac{(x+5)-(x+4)}{(x+5)^{2}} \\
& =\frac{1}{(x+5)^{2}}
\end{aligned}
$$

d)

$$
\text { e) } \begin{aligned}
f^{\prime}(x) & =\frac{1}{2}\left(x^{2}+16\right)^{-\frac{1}{2}} 2 x \\
& =\frac{x}{\sqrt{x^{2}+16}} \\
f^{\prime}(3) & =\frac{3}{5}
\end{aligned}
$$

c) i) $\frac{d y}{d x}=-12(7-2 x)^{5}$
ii) $\frac{d y}{d x}=-21 x^{-4}+4$
iii)

$$
\begin{align*}
f^{\prime}(x) & =v u^{\prime}+u v^{\prime} \\
& =(x-2)^{1 / 2}+x\left(\frac{1}{2}(x-2)^{-\frac{1}{2}}\right) \tag{2}\\
& =\sqrt{x-2}+\frac{x}{2 \sqrt{x-2}}
\end{align*}
$$

$$
(x-4)(x+7)=x^{3}+3 x-28
$$

f)
g) i) $(-2,2)$ (1)
ii) $(-2,3)$ (1)
iii). $y=1$
Δ Gradent tangene $=3$.
when $x=0 \quad y=4$.

$$
\begin{aligned}
& \ln x=0 \quad y=4 . \\
& 4-4=3(x-0) \quad 3 x-4+4=0
\end{aligned}
$$

Question 3.

$$
\begin{align*}
& \text { a) } 2 x-y-7=0 \text {. } \tag{1}\\
& 3 x+2 y-14=0 \tag{2}\\
& 2 \times 104 x-2 y-14=0 \tag{3}
\end{align*}
$$

(3) + (2)

$$
\begin{gathered}
7 x-28=0 \\
x=+4 \\
\therefore \quad y=2 x-7 . \\
\therefore \quad y=+1
\end{gathered}
$$

Solution is $x-4, y=1$
b)

$$
\begin{aligned}
& (a+1)^{2}-(a+1)(a-1) \\
& =a^{2}+2 a+1-a^{2}+1 . \\
& =2 a+2 . \\
& =2(a+1) .
\end{aligned}
$$

c)

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-4 \pm \sqrt{16+24}}{2} \\
& =-2 \pm \sqrt{10}
\end{aligned}
$$

e.) $\tan 30^{\circ}=\frac{1}{\sqrt{3}}$
ii) $\cos 210^{\circ}=\frac{-\sqrt{3}}{2}$

d)

iII)

$$
\begin{aligned}
& y=x^{2}-4 x+3 \\
& y=(x-1)(x-3)
\end{aligned}
$$

f)

$$
\begin{aligned}
& \tan \theta=\frac{50}{300}=\frac{5}{3}=\frac{1}{6} \\
& \theta=9^{\circ} 27^{\prime}=9^{\circ} \text { (nearest) } \\
& \text { degree) }
\end{aligned}
$$

Question 3 (CONT)

$$
\text { g) } \begin{array}{rl}
5^{x} & =7 \\
\log _{5} 7 & 7 \\
\therefore x_{x} & =\frac{\log _{10} 7}{\log _{10} 5} \\
& =1.209(3 \mathrm{dp})
\end{array}
$$

h)

$$
\begin{gathered}
2 \sin x+1=0 . \\
\sin x=-\frac{1}{2} . \\
x=210^{\circ}, 330^{\circ} .
\end{gathered}
$$

Question 4
a) i) $x \in \mathbb{R}: x \neq 1$
ii) $x \in \mathbb{R}: x<2$
b).

$$
\begin{aligned}
\text { 1) } f(x) & =1-x^{2} \\
f(-x) & =1-\left(-x^{2}\right) \\
& =f(x)
\end{aligned}
$$

\therefore EVEN FUNCTION
11)

$$
\text { 11) } \begin{aligned}
f(x) & =\frac{x^{-}}{1+x^{2}} \\
f(-x) & =\frac{-x}{1+x^{2}} \\
& =-f(x)
\end{aligned}
$$

\therefore ODD FUNCTION
iii)

$$
\begin{aligned}
& f(x)=-3 x-x^{2} \\
& f(-x)=3 x-x^{2}
\end{aligned}
$$

\therefore NEITHER

$$
\text { iv) } \begin{aligned}
& f(x)=-3|x| \\
& f(-x)=-3 x \\
&=f(x) \\
& 0 \\
& \Rightarrow \text { EVEN FUNCTION } \\
& \Rightarrow x^{2}+y^{2}-4 x+b y-3=0 \\
& x^{2}-4 x+(2)^{2}+y^{2}+6 y+3^{2}=3+4+9 . \\
&(x-2)^{2}+(y+3)^{2}=16
\end{aligned}
$$

c)

Centre of Circle $(2,-3)$.

$$
\text { Radius }=4
$$

d)

e)

i) $90^{\circ}-55^{\circ} \mathrm{T}=35^{\circ}$ (complimed
11)

$$
\begin{aligned}
& \frac{x y}{\sin Y L X}=\frac{L x}{\sin L Y X} \\
& \begin{aligned}
\frac{x y}{\sin 30^{\circ}} & =\frac{20}{\sin 35^{\circ}} \\
x y & =\frac{1}{2}(20) \operatorname{cosec} 35^{\circ} \\
& =10 \operatorname{cosec} 35^{\circ}
\end{aligned}
\end{aligned}
$$

$x y=17.4$ nauticalmiles

