

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

September

2006 Year 11 Yearly **Examination**

Mathematics (2 Unit Continuers)

General Instructions

- Reading Time 5 Minutes
- Working time − 1 ½ Hours
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators maybe used.
- EACH SECTION IS TO BE RETURNED IN A SEPARATE BUNDLE. Section A (Questions 1 & 2) and Section B (Questions 3 & 4)
- All necessary working should be shown in every question.

Total Marks - 60

Attempt questions 1-4

Examiner: F Nesbitt

SECTION A

QUESTION 1

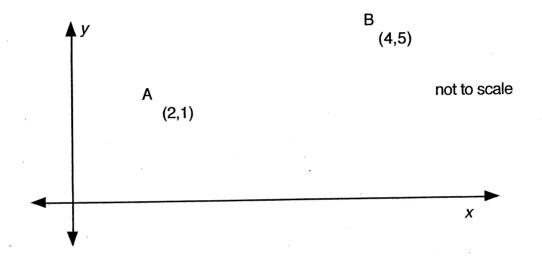
- (a) Show that $\frac{1}{\sqrt{7}+2} \frac{1}{\sqrt{7}-2}$ is rational.
- (b) Find $\lim_{x \to 5} \frac{x^2 5}{x 5}$
- (c) Differentiate:
 - (i) $24x(2x^2-1)$
 - (ii) $\frac{x-5}{2x+3}$
 - (iii) $(7x^2 6x)^3$
 - (d) Simplify fully: $\log_3 \sqrt{27} \log_2 \frac{1}{8} + \log_5 125$
 - (e) Solve the inequation $|3x-1| \le 5$ and graph the solution on a number line.
 - (f) Solve for $m: 2^{2m} 3 \times 2^m 10 = 0$

QUESTION 2

- (a) For the parabola $(x+2)^2 = 8(y-1)$, find:
 - (i) the coordinates of its vertex
 - (ii) the coordinates its focus
 - (ii) the equation of its directrix.

3

(b)



In the diagram above, The points A and B have coordinates (2,1) and (4,5).

(i) Find M, the midpoint of AB.

1

(ii) Find the Gradient of AB.

1

(ii) This the Gladient of The.

2

(iii) Find the equation of the perpendicular bisector of AB.

2

- (iv) This perpendicular through M [in part (iii)] meets the y axis at D.
 - Find the coordinates of D

1

(v) Find the perpendicular distance from D to AB

2

(vi) Find the area of the triangle ADB

2

(c) Find from first principles, the gradient of the curve

$$x^2 + x$$
 at the point where $x=1$

3

SECTION B - START A NEW BOOKLET

6

5

OUESTION 3

- (a) For the curve $2x^3 + 3x^2 12x 2$:
 - (i) Find any turning points.
 - (ii) Determine the nature of each turning point.
 - (iii) Sketch the curve $-3 \le x \le 2$ showing all relevant features.
 - (iv) Find the minimum value of the curve in the given domain.

(b) In the arithmetic series $2+5+8+11+\dots$, find:

- (i) the 15th term.
- (ii) the sum of the first 15 terms.
- (c) a, b and 10 form an arithmetic sequence.
 - (i) Write an equation in a and b using the above information:
 - a, b and 18 form a geometric sequence.
 - (ii) Write a second equation in a and b using the above information
 - (iii) Solve the equations in (i) and (ii) to find 2 sets of values for a and b.

QUESTION 4

(a) Find the value(s) of k if the roots of the equation $x^2 + kx + 36 = 0$ are real and distinct.

- 2
- (b) In an "organic" fruit shop only 60% of the oranges and 80% of the apples are really organic. George bought 2 apples and one orange. What is the probability that at least one of the three pieces of fruit was really organic?
- 2

- (c) A closed cylindrical can is made from 100π square centimetres of metal. If h is the height and r is the radius,
 - (i) show that $h = \frac{50}{r} r$

(i)

2

(ii) Hence find an expression for the volume in terms of r.

1

(iii) Find the maximum possible volume of the can and show why it is a maximum. Answer to the nearest centimetre.

- 1
- (d) From a point O, an observer can see a lighthouse L on a bearing of 285°.An oil rig R can also be seen by the observer on a bearing of 215°. The lighthouse is 12 km from the oil rig and on a bearing of 012° from the oil rig.
- 3

(ii) Find the bearing of the oil rig from the lighthouse.

.

Find the distance, to the nearest kilometre, of the oil rig from the observer.

SECTION
$$\frac{A}{Question!}$$

(a) $\frac{1}{(57-2)} \times (57-2) = \frac{1}{(57-2)} \times (57+2)$

$$= \frac{57-2}{7-4} = \frac{(57+2)}{7-4}$$

$$= \frac{57-2}{7-4} = \frac{57-2}{7-4}$$

$$= \frac{57-2-57-2}{3}$$

$$= -\frac{4}{3} \text{ which is rational}$$

(b) $\lim_{x \to 5} \frac{x^2-5}{x^3-5}$

we can't factorise x^2-5 into factors that will concel with $x-5$.

Therefore, the limit does not exist $(\frac{20}{0})$.

(c)(i) let $y = 24x(2x^2-1)$
 $y = 48x^3-24x$
 $y = 144x^2-24$

(ii) let $y = \frac{x-5}{2x+3}$
 $y = \frac{x-5}{(2x+3)^2}$
 $y = \frac{(2x+3)^2}{(2x+3)^2}$

(iii) $\lim_{x \to 5} \int_{(2x+3)^2} \int_$

(d)
$$\log_3 \sqrt{27} - \log_2 \frac{1}{8} + \log_1 / 25$$

$$= \log_3 3^{3/2} - \log_2 2^{-3} + \log_5 5$$

$$= \frac{3}{2} \log_3 3 + 3/\log_2 2 + 3/\log_5 5$$

$$= \frac{3}{2} \log_3 3 + 3/\log_2 2 + 3/\log_5 5$$

$$= \frac{3}{2} + 3 + 3$$

$$= \frac{15}{2}$$
(e) $|3x - 1| \le 5$

$$3x \le 6$$

$$-3x + 1 \le 5$$

$$-3x \le 4$$

$$x \le 2$$

$$x \ge 2$$

$$x \ge 4$$

$$x \le 2$$

$$x \ge 2$$

$$(2^m)^2 - 3x \ge 2^m - 10 = 0$$

$$(2^m)^2 - 3x \ge 2^m - 10 = 0$$

$$(2^m)^2 - 3x \ge 2^m - 10 = 0$$

$$(2^m)^2 - 3x \ge 2^m - 10 = 0$$

$$(2^m)^2 - 3x \ge 2^m - 10 = 0$$

$$(2^m)^2 - 3x \ge 2^m - 10 = 0$$

$$(2^m)^2 - 3x \ge 2^m - 10 = 0$$

$$(2^m)^2 - 3x \ge 2^m - 10 = 0$$

$$(2^m)^2 - 3x \ge 2^m - 10 = 0$$

$$(2^m)^2 - 3x \ge 2^m - 10 = 0$$

$$(2^m)^2 - 3x \ge 2^m - 10 = 0$$

$$(2^m)^2 - 3x \ge 2^m - 10 = 0$$

$$(2^m)^2 - 3x \ge 2^m - 10 = 0$$

$$(2^m)^2 - 3x \ge 2^m - 10 = 0$$

$$(2^m)^2 - 3x \ge 2^m - 10 = 0$$

$$(2^m)^2 - 3x \ge 2^m - 10 = 0$$

$$(2^m)^2 - 3x \ge 2^m - 10 = 0$$

$$(2^m)^2 - 3x \ge 2^m - 10 = 0$$

$$(2^m)^2 - 3x \ge 2^m - 10 = 0$$

$$(2^m)^2 - 3x \ge 2^m - 10 = 0$$

$$(2^m)^2 - 3x \ge 2^m - 10 = 0$$

$$(2^m)^2 - 3x \ge 2^m - 10 = 0$$

$$(2^m)^2 - 3x \ge 2^m - 10 = 0$$

$$(2^m)^2 - 3x \ge 2^m - 10 = 0$$

$$(2^m)^2 - 3x \ge 2^m - 10 = 0$$

$$(2^m)^2 - 3x \ge 2^m - 10 = 0$$

$$(2^m)^2 - 3x \ge 2^m - 10 = 0$$

$$(2^m)^2 - 3x \ge 2^m - 10 = 0$$

$$(2^m)^2 - 3x \ge 2^m - 10 = 0$$

$$(2^m)^2 - 3x \ge 2^m - 10 = 0$$

$$(2^m)^2 - 3x \ge 2^m - 10 = 0$$

$$(2^m)^2 - 3x \ge 2^m - 10 = 0$$

$$(2^m)^2 - 3x \ge 2^m - 10 = 0$$

$$(2^m)^2 - 3x \ge 2^m - 10 = 0$$

$$(2^m)^2 - 3x \ge 2^m - 10 = 0$$

$$(2^m)^2 - 3x \ge 2^m - 10 = 0$$

$$(2^m)^2 - 3x \ge 2^m - 10 = 0$$

$$(2^m)^2 - 3x \ge 2^m - 10 = 0$$

$$(2^m)^2 - 3x \ge 2^m - 10 = 0$$

$$(2^m)^2 - 3x \ge 2^m - 10 = 0$$

$$(2^m)^2 - 3x \ge 2^m - 10 = 0$$

$$(2^m)^2 - 3x \ge 2^m - 10 = 0$$

$$(2^m)^2 - 3x \ge 2^m - 10 = 0$$

$$(2^m)^2 - 3x \ge 2^m - 10 = 0$$

$$(2^m)^2 - 3x \ge 2^m - 10 = 0$$

$$(2^m)^2 - 3x \ge 2^m - 10 = 0$$

$$(2^m)^2 - 3x \ge 2^m - 10 = 0$$

$$(2^m)^2 - 3x \ge 2^m - 10 = 0$$

$$(2^m)^2 - 3x \ge 2^m - 10 = 0$$

$$(2^m)^2 - 3x \ge 2^m - 10 = 0$$

$$(2^m)^2 - 3x \ge 2^m - 10 = 0$$

$$(2^m)^2 - 3x \ge 2^m - 10 = 0$$

$$(2^m)^2 - 3x \ge 2^m - 10 = 0$$

$$(2^m)^2 - 3x \ge 2^m - 10 = 0$$

$$(2^m)^2 - 3x \ge 2^m - 10 = 0$$

$$(2^m)^2 - 3x \ge 2^m - 10 = 0$$

$$(2^m)^2 - 3x \ge 2^m - 10 = 0$$

$$(2^m)^2 - 3x \ge 2^m - 10 = 0$$

$$(2^m)^2 - 3x \ge 2^m - 10$$

Question 2 (a) (2+2)2=8(y-1) is in the form (x-h)= 4a (y-k) where (h, k) is vertex a is focal length vertex is (-2,1) (ii) 4a=8 focus is (-2,3) (iii) equation of directorix is y=-1 (d) a B(4,5) A(2,1) $M\left(\frac{2+4}{2},\frac{1+5}{2}\right)$ M(3,3) $M = \frac{y_1 - y_1}{x_2 - x_1}$

ii) $M = \frac{3^{2} - 3^{2}}{2 - 3^{2}}$ $M_{AB}^{2} = \frac{5 - 1}{4 - 2}$ $M_{AB}^{2} = \frac{4}{2}$ $M_{AB}^{2} = 2$

(iii)
$$M_{z} = -\frac{1}{2}$$
 (perpendicular lines $M_{z} \times M_{z} = -1$)

 $y-y_{z} = m(x-x_{z})$
 $y-3 = -\frac{1}{2}(x-3)$
 $2y-6 = -x+3$
 $x+2y-9=0$
 $2y-9=0$
 $2y-9=0$
 $2y=9$
 $y=\frac{9}{2}$

... $D(0,\frac{9}{2})$

(v) The perpendicular distance from $D + AB$

is the length DM .

 $d = \sqrt{(x_{z}-x_{z})^{2}+(y_{z}-y_{z})^{2}}$
 $DM = \sqrt{\frac{45}{4}}$
 $DM = \sqrt{$

AB =
$$2\sqrt{5}$$

Area = $\frac{1}{2} \times AB \times DM = \frac{1}{2} \times (2\sqrt{5} \times 3\sqrt{5}) = \frac{15}{2}$ units
(c) $y = x^2 + x$
 $|x| + f(x) = x^2 + x$
 $f(x+h) = (x+h)^2 + (x+h)$
 $= x^2 + 2xh + h^2 + 2x + h$
 $f(x) = h + 0$
 $= h + 0$
 $= h + 0$
 $= h + 0$
 $= 2x + (0) + 1$
 $= 2x + 1$

2006 Mathematics Continuers 2-Unit Yearly: Section B solutions

2

1

2

1

- 3. (a) For the curve $y = 2x^3 + 3x^2 12x 2$:
 - (i) Find any turning points.

Solution: $\frac{dy}{dx} = 6x^2 + 6x - 12,$ = $6(x^2 + x - 2),$ = 6(x + 2)(x - 1),= 0 when x = -2, 1. \therefore Turning points are at (-2, 18) and (1, -9).

(ii) Determine the nature of each turning point.

Solution: $\frac{d^2y}{dx^2} = 12x + 6,$ = -18 when x = -2, = 18 when x = 1. $\therefore \text{ Maximum at } (-2, 18) \text{ and minimum at } (1, -9).$

(iii) Sketch the curve $-3 \le x \le 2$ showing all relevant features.

Solution: (-2, 18)16

12

8 (-3, 7)4 (2, 2) -3 -2 -1 (0, -2) -4 -8 (1, -9)

(iv) Find the minimum value of the curve in the given domain.

Solution: The minimum value is -9.

2

1

1

3

Solution:
$$a = 2$$
, $d = 3$.
 $\therefore U_{15} = 2 + (15 - 1)3$,
 $= 44$.

(ii) the sum of the first 15 terms.

Solution: $S_{15} = \frac{15}{2}(2+44),$ = 345.

(c) a, b, and 10 form an arithmetic sequence.

(i) Write an equation in a and b using the above information.

Solution: 10 - b = b - a, a = 2b - 10.

a, b, and 18 form a geometric sequence.

(ii) Write a second equation in a and b using the above information.

Solution: $\frac{18}{b} = \frac{b}{a}$, $b^2 = 18a$.

(iii) Solve the equations in (i) and (ii) to find 2 sets of values for a and b.

Solution: $b^2 = 18(2b - 10),$ $b^2 - 36b + 180 = 0,$ (b-6)(b-30) = 0. $\therefore b = 6 \text{ or } 30,$ a = 2 or 50.

2

2

1

Solution:
$$\Delta > 0$$
, $i.e., k^2 - 4 \times 36 > 0$, $k^2 > 12^2$, $\therefore k < -12, k > 12$.

(b) In an "organic" fruit shop only 60% of the oranges and 80% of the apples are really organic. George bought two apples and one orange. What is the probability that at least one of the three pieces of fruit was really organic?

Solution: P(at least one) = P(not none),
=
$$1 - \frac{1}{5} \times \frac{1}{5} \times \frac{2}{5}$$
,
= $\frac{123}{125}$.

(c) A closed cylindrical can is made from 100π square centimetres of metal. If h is the height and r is the radius,

(i) show that
$$h = \frac{50}{r} - r$$
.

Solution: Surface area,
$$100\pi=2\pi r^2+2\pi rh,$$
 $50=r^2+rh,$ $rh=50-r^2,$ $h=\frac{50}{r}-r.$

(ii) Hence find an expression for the volume in terms of r.

Solution: Volume,
$$V = \pi r^2 h$$
,

$$= \pi r^2 \left(\frac{50}{r} - r\right),$$

$$= (50\pi r - \pi r^3), \text{ or}$$

$$= (50 - r^2)\pi r.$$

(iii) Find the maximum possible volume of the can and show why it is a maximum. Answer to the nearest cubic centimetre.

4

3

1

Max. volume = $(50 - \frac{50}{3}) \times 5\sqrt{\frac{2}{3}} \times \pi \text{ cm}^3$, $\approx 427 \cdot 516609974 \text{ cm}^3$ by calculator, $\approx 428 \text{ cm}^3$.

- (d) From a point O, an observer can see a lighthouse L on a bearing of 285°T. An oil rig R can also be seen by the observer on a bearing of 215°T. The lighthouse is 12 km from the oil rig and on a bearing of 012°T from the oil rig.
 - (i) Find the distance, to the nearest kilometre, of the oil rig from the observer.

(ii) Find the bearing of the oil rig from the lighthouse.

Solution: Bearing = $12^{\circ} + 180^{\circ}$, = 192° T.