

SEPTEMBER 2009

Yearly Examination

YEAR 11

Mathematics (2 unit) & Extension Continuers

Instructions:

- Each Question is to be returned in a separate booklet.
- Question 1 & 2 are to be collected after 60 minutes at which time the 2 unit Mathematics students will be dismissed.
- Question 3 & 4 are to be collected after 105 minutes.
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators may be used.
- All necessary working should be shown in every question.
- Answer in simplest exact form unless otherwise stated.
- Full marks may not be awarded for careless or badly arranged work.

Examiner: A Fuller

(Use a SEPARATE writing booklet)

Question 1 (28 marks)

(a) Find the value of $\log_3 9$.

1

(b) Solve the following for x:

6

- (i) $\log_6 x = 3$
- (ii) $\log_x 3 = -1$
- (iii) $2^{2x+1} = \frac{1}{16}$
- (iv) $x^2 + 3x 18 = 0$

- (c) Differentiate the following with respect to x:
 - (i) 2x + 5
 - (ii) $\frac{1}{2x+5}$
 - (iii) $\frac{2x+5}{x}$
 - (iv) $\frac{x}{2x+5}$

- (d) Sketch the following on separate axes showing any intercepts with the co-ordinate axes and any asymptotes:
- 4

- (i) $y = \frac{1}{x} + 1$
- (ii) $y = \log_2(x+1)$
- (e) Write $2x^2 7x 4$ in the form $a(x+2)^2 + b(x+2) + c$.

3

(f) Consider the arithmetic series: $-1 + 3 + 7 + 11 + 15 + \dots$

4

- (i) Which term of the series is 391?
- (ii) Hence, find the sum up to the term which is 391.
- (g) If $f(x) = x^3 3x^2 6x$. Evaluate:

- (i) f(-2)
- (ii) f'(2)

(Use a SEPARATE writing booklet)

Question 2 (28 marks)

(a) Consider the geometric series: $27 + 18 + 12 + 8 + \dots$

2

- (i) Explain why the series has a limiting sum.
- (ii) Find the limiting sum of the series.
- (b) Find the co-ordinates of the focus and the equation of the directrix of the parabola $y = \frac{x^2}{4} 1$.

3

(c) State whether the following functions are odd, even, or neither:

3

- (i) $f(x) = x^6 + 10$
- (ii) $f(x) = \frac{x^2}{2-x}$
- (iii) $f(x) = \log_{10} 2^x$
- (d) Find using first principles the derivative f'(x) given that $f(x) = x^3$.

(e)	Let	$\log_5 3$	=	a	and	امور	2 =	b.
(C)	LCU	1085	, —	α	and	1085		0.

4

- (i) Find the following in terms of a and b:
 - $(\alpha) \log_5 6$
 - $(\beta) \log_5(\frac{1}{4})$
- (ii) Evaluate 5^{2a} .
- (f) Find the value(s) of k for which $x^2 kx + 4 = 0$ has:

5

- (i) one root equal to -1
- (ii) real roots
- (iii) one root double the other.
- (g) Find the domain and the range of the following:
 - (i) $y = \sqrt{1-x}$
 - (ii) $y = \sqrt{1 x^2}$

- (h) Caleb plans to deposit an amount of money into an account which will pay him 1% interest each month on the balance of his account at the time.
 Immediately after each interest payment is made, Caleb plans to withdraw \$1000.
 Let his deposit be \$D.
 - (i) Show that when he has made his second withdrawal, the balance of his account will be $[D(1.01)^2 1000(1 + 1.01)]$.
 - (ii) Caleb wants his deposit to be sufficient to be able to make withdrawals for 10 years. Find, to the nearest \$100, what his deposit must be.

(b) (i)
$$\log_{6} x = 3$$

 $x = 6$
 $3c = 216$

(ii)
$$\log_{2} x^{3} = -1$$

 $3 = x^{-1}$
 $x = \frac{1}{3}$

(iii)
$$2^{2\pi(+)} = \frac{1}{16}$$

 $2^{2\pi(+)} = 2^{-4}$
 $2\pi(+) = -4$
 $2(2\pi(+)) = -4$
 $2(2\pi(+)) = -4$

(iv)
$$x^{2} + 3x - 18 = 0$$

 $(x+6)(x-3) = 0$
 $x = 6 \text{ or } 3$

(ii)
$$\frac{d}{dx}\left(\frac{1}{2\pi i+5}\right) = \frac{d}{dx}\left(\left(2\pi i+5\right)^{-1}\right)$$

$$= -1 \times \left(2\pi i+5\right)^{-2} \times 2$$

$$= \frac{-2}{\left(2\pi i+5\right)^{2}}$$

(iii)
$$\frac{d}{dn} \left(\frac{2\pi i + 5}{\pi} \right) = \frac{d}{dn} \left(2 + \frac{5}{\pi} \right)$$

$$= 5 \times -1 \times -2$$

$$= \frac{-5}{363} \qquad \boxed{2}$$

(iv)
$$\frac{d}{dk} \left(\frac{2k+5}{2k+5} \right) = \frac{(2x+5) \cdot 1 - x \cdot 2}{(2x+5)^2}$$

$$= \frac{2x+5-2x}{(2x+5)^2}$$

$$=\frac{5}{(2\pi \iota + 5)^2}$$

$$(d) (i)$$

$$y = \frac{1}{x} + 1$$

$$x$$

$$|x|$$

(e)
$$2\pi^2 - 7\pi - 4 = a(\pi + 2)^2 + b(\pi + 2) + c$$

Equating leading coefficients $a = 2$
Let $x = -2$: $8 + 14 - 4 = c$

Let
$$\gamma = 0$$
: $-4 = 2 \times 4 + 5 \times 2 + 18$

$$-4 = 25 + 26$$

$$25 = -30$$

$$5 = -15$$

|3(

$$(i)$$
Tn = -1 + (n-1).4 = 391
 $4(n-1) = 392$
 $n-1 = 98$

(ii)
$$S_{qq} = \frac{qq}{2}(-1+3q1)$$

= $\frac{qq}{2} \times 3q0$
= $1q305$

(i)
$$f(-2) = -3 - 12 + 12$$

$$= -8$$
(ii) $f'(x) = 3x^2 - 6x - 6$

$$f'(2) = 12 - 12 - 6$$

$$= -6$$

$$|3|$$

Question 2.	$f(-x) = (-x)^2$
a) If IrIX 1. the sum of the series is limited to some finite number of	$\frac{2-(-x)}{-x^2}$ $= x^2$ $\frac{2+x}{-x^2}$ $= 6(x) \text{ is neither } 0$
ii) $Q = 27$ $r = \frac{2}{3}$	$f(x) = \log_{10} 2^{\infty} = x \log_{10} 2$
$S_{co} = \frac{27}{1 - ^{2}13}$ = 81	$f(-x) = \log_{10} 2^{-3x}$ = $-x\log_{10} 2$
b) $y = \frac{3c^2}{4} - 1$	$= -f(x)$ $\therefore f(x) \text{ is odd.} \bigcirc$
$\frac{4y = x^2 - 4}{x^2 = 4y + 4}$ $\frac{x^2 = 4(y + 1)}{x^2 = 4(y + 1)}$	d) $f(x) = f(x) - f(x)$
$\frac{\alpha^2 = 4(y+1)}{500}$	$= (2+h)^3 - \dot{x}^3$
focuse(0,0) \oplus directrix: $u = -1 - 1$	$(5c+h)^{3} = (x^{2} + 2\alpha h + h^{2})(\alpha + h)$ $= x^{3} + x^{2}h + 2x^{2}h + 2xh^{2}$ $= x^{3} + 3x^{2}h + 3xh^{2} + h^{3}$ $= x^{3} + 3x^{2}h + 3xh^{2} + h^{3}$
y = -2 (1) C) i) $f(x) = x^6 + 10$	$-\frac{x^3+3x^2h+3xh^2+h^3-x^3}{h}$
$\frac{f(-x) = (-x)^6 + 10}{1 = x^6 + 10}$	$\frac{-3x^{2}h + 3xh^{2} + h^{3}}{h}$ $= bx(3x^{2} + 3xh + h^{2})$
is f(a) is even 0 ii) $f(x) = x^2$	$\frac{1}{4 \text{ in }} = 3x^2 \qquad \boxed{2}$ $\frac{1}{1} = 3x^2 \qquad \boxed{2}$
$2-\infty$	$f'(x) = 3x^2$

e) 100 2 0	° K=3√2, -3√2 (2)
$\frac{1005}{100} = \frac{1}{2}$	
<u>J</u> 5	9)0 Do x < 1
$1) \approx 109_{5}6 = 109_{5}3 + 109_{5}2$	· 23 4>0
$= Q + D \qquad \bigcirc$	12:) D: -1 6 x 6 1
	Rå 0 < y < 1 0
β) $\log (4) = \log 1 - \log 4$	b):) After I month
$\frac{-0.109.2}{-0.2109.2}$	A, = (\$D × 1.01) - 1000
= -26	
$\frac{11}{5^{2q}} = (5^q)^2$	After 2nd month $ A_{2} = (A_{1} \times 1.01) - 1000 $
$= 3^2$	= (\$D×1.01)-1000 \x1.01 - 100C
_ 9 (2)	$= 3\sqrt{0}\sqrt{(-0)^2 - 1000 \times (-0)^2 - 1000}$
f) x2- Kx +4=0	$= \# \widehat{D(1.01)^2} - 1000(1.01+1)$
•	
i) $(-1)^2 + 1 + 4 = 0$	$= \$ [D(1.01)^2 - 1000(1+101)] $
<u> </u>	D (1.01),50 -1000 [1.01,3 + 1.01,8
n) △>○	+1.01"7++1.01+1]>0
° 5 √62-4ac >0	this part is a series
$\frac{b^2 - 4ac}{(-x)^2 - 4x1x4}$	a=1, r=1.01 n=120
4 ² - 16 7/0	Sn = 1(1.01 -1)
L2 >16	1.01 -1
<u> </u>	D(101) - 1000 x 1 (101"-1) 70
111) x+B=-b/a	1.01-1
	D(1.01) > 1000 x 1(1.01'20-1)
3×= ×	1.01 -1 - D> 1000 × (1.01°° -1)
2×2 = 4	- 1:01 - 1
$\frac{2z^2 = 4}{2}$	(1.01) ¹²⁰
$\frac{\cancel{3}^2 - \cancel{2}}{\cancel{3} = \cancel{-} \cancel{1} \cancel{2}}$	1) \$(0.700 (0000)
N. J.	- 1) > \$69,700 · (neavest \$100)