SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

2010

Year 11 Yearly
Examination

Mathematics
 (2 Unit)

General Instructions

- Reading Time - 5 Minutes
- Working time - 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators maybe used.
- All necessary working should be shown in every question.
- All answers to be given in simplified exact form unless otherwise stated.
- Hand in your answers in 2 separate bundles:

Section A (Question 1, Question 2 and Question 3), and

Section B (Question 4, Question 5 and Question 6)

Total Marks - 70

- Attempt questions 1-6
- All questions are NOT of equal value.

Examiner: P. Bigelow

Section A - Start a new booklet.

Question 1 (10 marks).

a) The point $(2, c)$ lies on $x+2 y+4=0$, find the value of c.
b) Find T_{10} of $5+9+13+17+\ldots$
c) If $f(y)=9-y^{2}$, find:
(i) $f(-2)$
(ii) $f(y+1)$
d) Solve $x^{2}+2 x-8=0$.
e) State the domain of $f(x)=\sqrt{3-x}$.
f) Find x in the following:
(i) $\log _{x} 36=2$
(ii) $\log _{8} 128=x$
g) Form a quadratic equation with roots 2 and -5 .

End of Question 1

Question 2 (10 Marks).

a) Find the sum of the first 9 terms of $2-1+\frac{1}{2}-\frac{1}{4}+\ldots$
b) Write down the equation of the line represented in the diagram:

c) State whether the following functions are ODD, EVEN or NEITHER:
(i) $\quad f(x)=\frac{4}{9+x^{2}}$
(ii) $\quad f(x)=\frac{x}{9+x}$
(iii) $\quad f(x)=\frac{-x}{9+x^{2}}$
d) Solve $2^{3 x+2}=64 \quad 2$
e) Use the quadratic formula to solve $2 x^{2}+5 x-1=0$. (Leave answers in surd form.)

End of Question 2

Question 3 (11 marks).

a) By considering $0 . \dot{5} \dot{4}$ as an infinite geometric series, express $0 . \dot{5} \dot{4}$ as a fraction in simplest form.
b) Sketch the following lines on separate diagrams (showing essential features):
(i) $y=x+2$
(ii) $3 x-y-6=0$
c) State whether the following quadratics are INDEFINITE, POSITIVE DEFINITE or NEGATIVE DEFINITE:
(i) $2 x^{2}+3 x+7$
(ii) $6-x-x^{2}$
(iii) $x^{2}-9 x-8$
d) Find $\lim _{x \rightarrow 4} \frac{x-4}{x^{2}-16}$.

End of Question 3

End of Section A

Section B - Start a new booklet.

Question 4 (13 marks).

Marks
a) Sketch the following on separate diagrams (showing essential features):
(i) $x y=-4$
(ii) $y=2^{-x}$
(iii) $y=\sqrt{4-x^{2}}$
(iv) $x^{2}+y^{2}-6 y=0$
b) If α and β are the roots of $2 x^{2}-6 x-1=0$, find:
(i) $\alpha+\beta$
(ii) $\alpha \beta$
(iii) $\frac{1}{\alpha}+\frac{1}{\beta}$
(iv) $\alpha^{2}+\beta^{2}$
c) If $f(x)=x^{2}+2 x+5$, find $f^{\prime}(x)$ where $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$.

End of Question 4

Question 5 (14 marks).

a) Graph the region defined by the intersection of $y \geq x^{2}$ and $x+y \leq 2$.
b) Find $f^{\prime}(x)$ in the following:
(i) $f(x)=3 x^{2}-x+1$
(ii) $\quad f(x)=(1-5 x)^{6}$
(iii) $\quad f(x)=\frac{1}{\sqrt{x}}$
c) If $\log _{a} 3=0.477$ and $\log _{a} 2=0.301$. Find:
(i) $\log _{a} 6$
(ii) $\log _{a} 9$
(iii) $\log _{a} 1.5$

End of Question 5

Question 6 (14 marks).

a) (i) Find the axis of symmetry of $y=4+x-x^{2}$. 2
(ii) Hence, or otherwise, find the maximum value of $4+x-x^{2}$. 2
b) Find the equation of the two tangents to the curve $y=3 x^{2}-6 x$ at the points where it crosses the x-axis.
c) Given $5^{x}=13$, find x correct to two decimal places.
d) A couple wish to save for a deposit on a home. They need to save $\$ 20,000$ over a 5 year period. They deposit $\$ P$ every month into an account which is paying 9\%p.a., compounding monthly.
(i) Show that $20000=P\left(1.0075+1.0075^{2}+\ldots+1.0075^{60}\right)$.
(ii) Find P to the nearest dollar.

End of Question 6

End of Section B.

End of Examination.

Solutions YRII Lumet leary 2010 .
(1)

$$
\begin{align*}
& \text { (a) } x+2 y+4=0 \\
& \left.\begin{array}{l}
x=2 \\
y=c
\end{array}\right\} \\
& 2+20+4=0 \\
& \begin{aligned}
2 c+b & =0 \\
c & =-3 .
\end{aligned} \tag{2}
\end{align*}
$$

(b) $5+9+13+17+\cdots$

Find Tro.
arithmetic

$$
\begin{align*}
T_{n} & =a+(n-1) d \tag{0}\\
T_{10} & =5+9 \times 4 \\
& =41 .
\end{align*}
$$

(c) $\quad f(y)=9-y^{2}$
(i) $F(-2)=9-(-2)^{2}=9-4=5$
(i)

$$
\begin{align*}
F(y+1)=9-(y+1)^{2}=9-\left(y^{2}+2 y+1\right) & =9-y^{2}-2 y \tag{0}\\
& =8-y^{2}-2 y
\end{align*}
$$

(d)

$$
\begin{gather*}
x^{2}+2 x-8=0 \\
(x+4)(x-2)=0 \\
x=-4, x=2 \tag{1}
\end{gather*}
$$

(e)

$$
f(x)=\sqrt{3-x} \quad \begin{align*}
3-x & \geqslant 0 \\
-x & \geqslant-3 \tag{0}
\end{align*}
$$

(6)

$$
\begin{aligned}
& \text { (i) } \begin{array}{l}
x^{2}=36 \quad x=600 \\
8^{x}=128 \\
2^{3 x}=2^{7} \Rightarrow 3 x=7 \quad x=\frac{7}{3} \text { or } 2 \frac{1}{3} \text { (i) }
\end{array} \text { (i) }
\end{aligned}
$$

41
(a)

$$
\begin{gather*}
(x-2)(x+5)=0 \\
\text { or } x^{2}+5^{\prime} x-2 x-10=0 \tag{1}\\
x^{2}+3 x-10=0
\end{gather*}
$$

$(2)=\left(2-1+\frac{1}{2}-\frac{1}{4}+\cdots\right.$
geometric

$$
\begin{aligned}
a=2, r=9, r & =-\frac{1}{2} \\
S_{n}=\frac{a\left(r^{n}-1\right)}{\left(r^{2}-1\right)} & =\frac{2\left(\left(-\frac{1}{2}\right)^{9}-1\right)}{-\frac{1}{2}-1}=2 \times \frac{2}{3}\left(\left(-\frac{1}{2}\right)^{9}-1\right. \\
& =-\frac{4}{3}\left(-\frac{1}{512}-1\right)=1 \frac{43}{128}
\end{aligned}
$$

(b) points are $(8,0)$ and- $(0,4)$

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4-0}{0-8}=-\frac{1}{2}
$$

use $\left(y-y_{1}\right)=m\left(x-x_{1}\right)$ and $(8,0)$

$$
\begin{align*}
& (4-0)=-\frac{1}{2}(x-8) \\
& 2 y=-x+8 \tag{2}\\
& x+2 y-8=0
\end{align*}
$$

(c) (i) $f(x)=\frac{4}{9+x^{2}} \quad f(-x)=\frac{4}{9+(-x)^{2}}=\frac{4}{9+x^{2}}$. feren (i)
(ii) $f(x)=\frac{x}{9+x}, f(-x)=\frac{-x}{9-x}=\frac{-x}{-(x-9)}=\frac{x}{x-9}$ neether (C)

2 (ic) (iii) $f(x)=\frac{-x}{9+x^{2}}$.

$$
f(-x)=\frac{--x}{9+(-x)^{2}}=\frac{x}{9+y^{2}}
$$

odd is $f(x)=-(-1-x)$ so $-\left(\frac{x}{9+x^{2}}\right)=\frac{-x}{9+x^{2}}$. odd. (1)
(d)

$$
\begin{align*}
& 2^{3 x+2}=64 \\
& 2^{3 x+2}=2^{6} \\
& 3 x+2=6 \\
& 3 x=4 \quad x=4 / 3 \tag{2}
\end{align*}
$$

(e)

$$
\begin{align*}
& 2 x^{2}+5 x-1=0 \\
& x=\frac{-5 \pm \sqrt{25-4 \times 2 x-1}}{4} \\
& =\frac{-5 \pm \sqrt{33}}{4} \tag{2}
\end{align*}
$$

Q3. (a) $0.54=0.54+0.0054+0.000054+\cdots$ geosutric

$$
\begin{aligned}
& a=0.54 \\
& r=0.01 S_{\infty}=\frac{a}{1-r}
\end{aligned}=\frac{0.54}{1-0.01} .
$$

3 (b) (i) $y=x+2$.

(ii) $3 x-y-6=0$

$$
y=3 x-6
$$

(c) $\Delta=b^{2}-4 a c$

(i) $2 x^{2}+3 x+7$

$$
\Delta=9-4 \times 2 \times 7=-47
$$

concave up. So positive def (1)
no roots
(ij)

$$
\begin{aligned}
-x^{2}-x+6 \quad \Delta & =1-4 \times 1 \times 6 \\
& =25
\end{aligned}
$$

concave dowin indefinite
has roots
(iii) $x^{2}-9 x-8$

$$
\begin{aligned}
\Delta & =81-4 \times 1 \times-8 \\
& =113 .
\end{aligned}
$$

Concave up
(d) $\lim _{x \rightarrow 4} \frac{(x-4)}{(x-4)(x+4)}=\frac{1}{x+4} \rightarrow \frac{1}{8}$
$A(4)$ (a) (i) $x y=-4$

$$
y=-\frac{4}{x} .
$$

(ii) $y=2$

$\left(-\frac{6}{2}\right)^{2}$

$$
\begin{gathered}
\text { (iv) } x^{2}+y^{2}-6 y=0 \\
x^{2}+y^{2}-6 y+9=9 \\
x^{2}+(y-3)^{2}=9
\end{gathered}
$$

Cride centre $(0,3) r=3$.
(iii) $y=\sqrt{4-x^{2}}$

(b) $2 x^{2}-6 x-1=0$
(i) $\alpha+\beta=-\frac{b}{a}=-\frac{-6}{2}=3$
(ii) $\alpha \beta=\frac{c}{a}=-\frac{1}{2}$
(iii) $\frac{1}{\alpha}+\frac{1}{\beta}=\frac{\alpha+\beta}{\alpha \beta}=\frac{3}{-\frac{1}{2}}=-6$
(iv)

$$
\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta=3^{2}-2 \times \frac{-1}{2}=9+1=10
$$

4(c) $f(x)=x^{2}+2 x+5$

$$
\begin{aligned}
y^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{2}+2(x+h)+5-\left(x^{2}+2 x+5\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}+1 x+2 h+\xi^{2}-x^{2}-x-5}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 x h+h^{2}+2 h}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(2 x+h+2)}{h}
\end{aligned}
$$

(45) (a)

(b) (i) $f^{\prime}(x)=6 x-1$
(ii) $f^{\prime}(x)=6(1-5 x)^{5} \times-5=-30(1-5 x)^{5}$

$$
\begin{equation*}
\text { (䜣 } f(x)=x^{-\frac{1}{2}}, f^{\prime}(x)=-\frac{1}{2} x^{-1 \%}=\frac{-1}{2 x \sqrt{x}} \tag{E}
\end{equation*}
$$

$05(c)$
(i)

$$
\begin{align*}
\log _{a} b & =\log _{a}(3+2) \\
& =\log _{a} 3+\log _{a} 2 \\
& =0.477+0.301 \\
& =0.778 \tag{2}
\end{align*}
$$

$$
\text { (ii) } \begin{align*}
\log _{a} 9 & =\log _{a} 3^{2} \\
& =2 \log _{a} 3=2 \times 0.477 \\
& =0.954
\end{align*}
$$

$$
\text { (iii) } \begin{aligned}
\log _{a} \frac{3}{2} & =\log _{a} 3-\log _{a} 2 \\
& =0.477-0.301 \\
& =0.176
\end{aligned}
$$

(0.b. (a) (i) $y=-x^{2}+x+4$
axis $x=-\frac{b}{2 a}=\frac{-1}{2 x-1}=\frac{1}{2}$
mane y value is $x=\frac{1}{2}$ ints $y=-x^{2}+x+4$

$$
\begin{align*}
& =-\left(\frac{1}{2}\right)^{2}+\frac{1}{2}+4 \\
& =4 \frac{1}{4} \tag{2}
\end{align*}
$$

(b)

$$
\text { b) } \begin{aligned}
y= & 3 x^{2}-6 x \\
= & 3 x(x-2) \\
\text { When } & 3 x(x-2)=0 \\
& x=0 \text { and } x=2 .
\end{aligned}
$$

6(b) cont

$$
\begin{aligned}
& y=3 x^{2}-6 x \\
& y^{\prime}=6 x-6
\end{aligned}
$$

at $x=0 \quad m=0-6=-6$.
at $x=2 \quad m=6+2-6=6$.
So

$$
(0,0) m=-6 \quad \text { and }
$$

$$
\begin{aligned}
& (2,0) m=6 \\
& (u-0)=b(x-2
\end{aligned}
$$

$$
\begin{aligned}
& (y-0)=-6(x-0) \\
& y=-6 x
\end{aligned}
$$

$$
(y-0)=6(x-2)
$$

$$
y=-6 x
$$

$$
y=16 x-12
$$

(c)

$$
\text { (c) } \begin{gather*}
5^{x}=13 . \\
\log _{10} 5^{x}=\log _{10} 13 \\
x \log _{10} 5^{1}=\log _{10} 13 \\
x=\frac{\log _{10} 13}{\log _{10} 5} \\
=1,59 . \tag{2}
\end{gather*}
$$

(d)
(b) (d) $\$ 20,000$

5 years
$\$ \rho$ every month.
9% pea $\Rightarrow 0.75 \%$ per month.
lIst month $\rho+0.75 \% \rho=\rho(1+0.75 \%)^{60}$
$2^{\text {nd month } P(1.0075)^{59}}=p(1.0075)^{60}$
Last month $P(1,0075)^{\prime}$
So

$$
\begin{aligned}
& P(1.0075)^{\prime}+P(1.0075)^{2}+\cdots+P(1.0075)=2000 \\
& P=\frac{20,000}{1.00 .75+1,0075^{2}++1.0075^{60}}
\end{aligned}
$$

50°
denominator $\frac{r t-a}{r-1}=\frac{1,0075 \times 1,0075-1.0075}{50075-1}$

$$
=\frac{1.0075^{61}-1.0075}{.0075}
$$

$=75.98981795 \ldots$

$$
\begin{align*}
\rho & =\$ 263.19 . \tag{2}\\
& =\$ 263 .
\end{align*}
$$

