

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

Yearly Examination 2011

Mathematics 2 Unit

General Instructions

- Working time 90 Minutes
- Reading Time 5 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators may be used.
- •
- All necessary working should be shown in every question.
- Answer in simplest exact form unless otherwise instructed.

Total Marks - 64

- All Questions may be attempted.
- Section A (Q1 & Q2) and Section B (Q3 & Q4) should be handed up in separate examination booklets.
- •
- Full Marks may not be awarded for careless or poorly set out work.

Examiner – P.R.Bigelow

Section A [Start a new booklet]

Question 1. (17 Marks)

(a)	Write down the exact values of:		
	(i)	sin 45°	
	(ii)	$\cos\frac{7\pi}{6}$	
(b)	The point (4,	<i>a</i>) lies on the line $4x - 3y - 7 = 0$. Find the value of <i>a</i> .	1
(c)	Solve the fol	lowing quadratic equations:	4
	(i)	$x^2 - x - 12 = 0.$	
	(ii)	$2x^2 + 4x - 5 = 0$ (Leave answer in simplest surd form.)	
(d)	What is the domain of the function $y = \sqrt{2-x}$?		1
(e)	State whethe	State whether the following functions are ODD, EVEN, or NEITHER.	
	(i)	$f(x) = x^2 + 12$	
	(ii)	$f(x) = \frac{-x}{x^2 + 1}$	

(f) Write down the value of:

2

Question 1 (Continued)

- (g) If α and β are roots of $x^2 6x 4 = 0$, find the values of:
 - (i) $\alpha + \beta$

αβ

(ii)

- (iii) $\frac{1}{\alpha} + \frac{1}{\beta}$
- (iv) $\alpha^2 + \beta^2$

Question 2. (16 Marks)

(a) What is the slope of the line x + 3y - 5 = 0? 1

4

4

4

3

- (b) Sketch the following showing essential features:
 - (i) y = x + 2 (iii) $y = 2^x$
 - (ii) xy = 2 (iv) y = |x-2|
- (c) For the parabola $x^2 = 8(y-1)$, write down the:
 - (i) co-ordinates of the vertex
 - (ii) focal length
 - (iii) co-ordinates of the focus
 - (iv) equation of the directrix.

(d) Find the equations of the following lines (giving your answer in general form).

- (i) through (4, 6) with slope -2.
- (ii) perpendicular to x 2y + 5 = 0 and passing through (3,6).
- (e) Find the size of the largest angle in the triangle (to the nearest minute).

Section B [Start a new booklet]

Question 3. (15 Marks)

(a)	Find the value of θ (to the nearest degree) if	
	$\cos\theta = -0.7$ and $180^\circ \le \theta \le 360^\circ$.	
(b)	Show that $(\sin\phi + \cos\phi)^2 + (\sin\phi - \cos\phi)^2 = 2$.	
(c)	Differentiate $f(x) = x^2 - 6x + 1$ by first principles.	
(d)	For the parabola $y = x^2 - 6x + 1$, find:	
	(i) the equation of the axis	
	(ii) the range of values of <i>y</i> .	
(e)	Find the perpendicular distance of the point (4,1) from the line $3x - 4y + 12 = 0$.	2

(f) Sketch the regions of the number plane defined by:

- (i) $x^2 + y^2 \le 16$
- (ii) $y > x^2 + 9$

4

Question 4 (16 Marks)

- (a) Differentiate the following:
 - (i) $y = 3 x + x^2$ (ii) $y = \sqrt{x}$ \sqrt{y} (iii) $y = \frac{x+1}{x-2}$ (iv) $y = (2 - 3x^2)^5$
- (b) Find the centre and radius of the circle $x^2 4x + y^2 + 6y = 0$.

 P_1 and P_2 are points 400m apart on horizontal ground. Mine shafts are driven from P_1 and P_2 to meet underground at M.

Find to the nearest metre

- (i) the length of the shaft $P_1 M$.
- (ii) the vertical depth of M below the surface.
- (d) For what values of k does $x^2 (k+5)x + 9 = 0$ have
 - (i) equal roots.
 - (ii) no roots.

This is the end of the paper.

2

4

4

'2011 QU YEARLYS QUESTION ONE 1811 45° (1 $\frac{7\pi}{6} = \frac{100}{100} = \frac{1000}{1000} = \frac{1$ $\frac{(A,a)}{SUBx=4} \frac{4x-3y-7=0}{4(4)-3a-7=0}$ (A,a)-3a + 9 = 0-(1)a=3- $\frac{x^2 - x - 12 = 0}{x - 4(x + 3) = 0}$ $x = 4 \alpha x = -3$ 2 ii) $2x^2 - 4x - 5 = 0$ $x = -b \pm \sqrt{b^2 - 4ac}$ 20 4 1 /16-4(2)-5 4 = 4 ± 156 $\frac{4}{=4\pm 2\sqrt{14}}$ 4 = 2± 114 Q V2-x domain xer: x < 2 f(x) =f(x) =2-12 $f(-x) = (-x)^2 - 12$ $-\infty$ $\chi^{2} - 12$ x2+1 since f(x)=f(-x) f(x) =Since -(xfn vs even IS . ..

QU YEARLY i) cot $D = adi = \frac{4}{3}$ opp 2 $3^{2} + 4^{2} = E$ SIN D= OPP ii) = 3 hi $x^2 - 6x - 4 = 0$ <u>a</u> $\alpha + \beta = \frac{-b}{q} = +6.$ $\alpha B = \frac{C}{\alpha} = \frac{\pi}{4}$ B+X XB Ь 4 ...B = (x + B)= (+6)^a $a^2 +$ <u>_</u> - 20B. = 36 + 8 42

2011 2U YEARLY تا : ۲۰۰۰ ۲۰۰۰ ۱۰ ۲۰۰۰ ۲۰۰۰ ۲۰ DUFSTION THO x + 3y $\overline{\alpha}$, , • • . . ŧ, Nº the +5<u>3u</u> $= -\frac{1}{3} \times \frac{5}{3}$ $\vec{(1)}$ gradient -1/3 b xy=2<u> 4=x+2</u> 11 Ч 2. 1 (2,1)≩द 2, (-2,-1) , ` 1<u>N-</u> <u>y=2x</u> (1,2) ক্রিন্ট x-2 IV <u> 4=</u> 012 2,0) (0,3) 2 $x^2 = 8$ <u>_ U</u> vertex length a=2 11 Contraction of the local division of the loc 111 0,3 2115 IN)

2011 QU YEARLY د کې د مېر د د د مېر د مېر د QUESTION TWO $y - y_i = m(x - x_i) \cdot (4_{1b}) \cdot m = -2_{1}$ $\frac{y-6=-2(x-4)}{y-6=-2x+8}$ x-4 2x + y - 14 = 0ii) x - 2y + 5 = 0. -2y = -x - 5 $U = \frac{1}{2}x + \frac{5}{2}$ grad of perp=-2 $grad = \pm$ -2x==-1v y = b = -2(x - 3)y = b = -2x + b2x+y-12=02 $\frac{\cos C}{2} = \frac{a^2 + b^2 - c^2}{2ab} = \frac{b^2 + 4^2 - q^2}{2ab}$ 2(6)(4) = 0.604 (3dp) C = 127°10'

24 YEARLY: 201 QUESTION THREE 45° 344 134°25 còs D · 0• $\frac{\theta = 134^{\circ}.25'}{\theta = 226^{\circ}}$ $(\sin\theta + \cos\theta)^2 + (\sin\theta - \cos\theta)^2 = 2$ prove $LHS = sin^2 \theta + 2sin \theta cos \theta + cos^2 \theta + (sin^2 \theta - 2cos \theta sin \theta + cos^2 \theta$ $(\sin^2\theta + \cos^2\theta) + (\sin^2\theta + \cos^2\theta)$ _ + - \mathcal{Q} RHS 2 $f(x) = x^2 - bx + 1$ b $x+h)^{2}-b(x+h)+1$ f(x+h) $x^{2}+2xh+h^{2}-bx-bh+1$ $\frac{f(x+h)-f(x)}{f(x+h)}$ SC h>0 $(x^2 + 2xh + h^2 - bx - bh +))$ lim = həo $\frac{2xh + h^2 - bh}{h}$ = lim h->0 Rx+h-b Jim ろうろ 20c-6

24 YEARLY $\hat{\mathcal{Q}}$ OII OUESTION THREE. -+1. ' · · · · · N. R. L. T. • • . . اہر ہے۔ ان $\frac{b}{2a} = \frac{b}{2} = 3$ y value when x=3 11 $u = (3)^{2} - 6(3) + 1$ y = 9 - (18) + 1= -9 + 1= - & Range yER: 42-8. 2 $\frac{3x+4y+12=0}{a}$ 4,1 -2141 Hd= e laxi+byi+C 4(1)+12 + d 4 3 = 32+ (-4) <u>12-4+12</u> <u>5</u>. = 4 units. -(2) $x^2 + y^2 \le 1b$ $y > x^2 + 9$ Ŋ 4. 0

2011 YEARLY 20 QUESTION 1/4=(3-x+z2 dy/dx = -1+2x . ---- ($\overline{x} = x^{1/2}$ 11) · 4= $\frac{dy}{dx} = \frac{1}{2}x^{-\frac{1}{2}}$ = _____ Î U V = x + 1x + |U'=1 ŧ١١` 1 = 1 $\frac{vu^{1}-uv^{1}}{va}$ (1) - (x + i)(1)2 $\frac{-2-x+1}{(x-2)^2}$ $\frac{-3}{(x-2)^2}$ $y = (2 - 3x^2)^5$ $\frac{dy}{dx} = 5(2 - 3x^2)^4 \times -6x$ <u>iv)</u> $(2 - 3x^2)^4$ = -30x $\frac{x^{2}-4x+y^{2}+by=0}{x^{2}-4x+4} + \frac{y^{2}+by=0}{y^{2}+by} = 13$ $(x-2)^{2} + (y+3)^{2} = 13$ Centre = (2)radius V13 -3

12 21 29 211 YEARD 187 Μ P, M=> 400 ίx SINZI <u>sin 130.</u> x= 400(sinzi) sin 130= 187 m (nearest m $\sin 29 = 5c$ 187. 7C 18 $x = 187 \sin 29$ $x = 90^{\circ}.72$ = 91 m $x^2 - (K+5)x + 9 = 0$ roots $b^2 - 4ac = 0$ Equal -(k+5) - 4(1)(9) = 0. $k^2 + 10k + 25 - 36 = 0$ $\frac{k^2 + 10R - 11 = 0}{(k + 11)(k - 1)} = 0$ K=-11 or +1 No roots: $b^2 - 4ac 40$ $(-(K+5))^2 - 4(1)(9) < 0$ R2+10R-11 20 -IL KA KI