

SYDNEY BOYS HIGH SCHOOL
 moore pari, surry hills

2014
YEAR 11
Yearly Examination

Mathematics

General Instruction

- Reading Time - 5 Minutes
- Working time - 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators maybe used.
- Each Section is to be returned in a separate bundle.
- Marks may NOT be awarded for messy or badly arranged work.
- All necessary working should be shown in every question.
- Answer in simplest exact form unless otherwise instructed

Total Marks - 75

- Attempt questions 1-6
- Hand up in 2 sections clearly marked A \& B
T.Evans
a) Determine whether the point $(-1,-8)$ lies on the line $2 x-3 y-23=0 \quad 2$
b) \quad Solve $2^{x}=3$
c) Find the value of $\left(\frac{-27}{8}\right)^{\frac{-4}{3}}$
d) Given that $\log _{a} b=2.75$ and $\log _{a} c=0.25$, find the value of:
i) $\log _{a}\left(\frac{b}{c}\right)$
ii) $\log _{a}(b c)^{2}$
e) State whether the following are ODD, EVEN or neither:
i) $f(x)=3 x+1$
ii) $f(x)=x^{4}-x^{2}$
f) The first term of geometric sequence is 2 and the fourth term is $128 . \quad 1$ Find the common ratio.

Question 2

13 Marks
a) For the following sequence: $36,24,16, \ldots \ldots$

Determine whether it is an Arithmetic or Geometric Progression, showing reasons.
b) Find $\lim _{x \rightarrow 4} \frac{x^{2}-x-12}{x-4}$
c) Differentiate
i) $4 x^{2}-x+1$1
ii) $\frac{3}{\sqrt[3]{x}} \quad 2$
iii) $\frac{3 x^{5}-2 x^{3}+5}{x^{2}}$
iv) $\sqrt{3 x^{2}-3}$2
v) $\frac{3 x^{2}}{5-3 x}$
a) i) Find all the $x \& y$-intercepts for the curve with the equation $y=x^{3}-1$.
ii) Neatly sketch the curve $y=x^{3}-1$, showing the information from 2 part i).
iii) Find the equation of the tangent to the curve $y=x^{3}-1$ at the point where $x=1$.
b) If $f(x)=15 x^{-2}-9 x^{3}$, find the value of $f^{\prime}(-1)$.
c) Differentiate $f(x)=x^{2}-3 x$ by first principles using the definition
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
d)

Simplify $\frac{\left(-2 x^{\frac{1}{2}} y^{\frac{1}{3}}\right)^{2}}{\left(3 x^{-1} y\right)^{\frac{1}{3}}} \times \frac{4 x^{\frac{1}{3}} y^{-\frac{1}{3}}}{\left(x^{-1} y\right)^{\frac{1}{3}}}$
a) The equation $2 x^{2}+5 x-1=0$ has roots α and β. Find the values of:
i) $\alpha+\beta$
1
ii) $\alpha \beta \quad 1$
iii) $\frac{1}{\alpha}+\frac{1}{\beta}$
iv) $\alpha^{2}+\beta^{2} \quad 2$
b) Consider the parabola $4 y=x^{2}-4 x$
i) Show, algebraically, how the parabola can be expressed in the 2 form $(x-2)^{2}=4(y+1)$
ii) Write down the coordinates of the vertex and the focus. 2
iii) Find the equation of the directrix.
a) i) Sketch $y=\log _{2}(x+2)$, showing the $x \& y$-intersections and the asymptote.
ii)Hence, state the domain and range of $y=\log _{2}(x+2)$.
b) Find $A, B \& C$ such that $A(x-1)^{2}+B x+c=x^{2}$
c) In a certain arithmetic series the $9^{\text {th }}$ term is 78 , and the $17^{\text {th }}$ term is 50. Find:
i) The first term and the common difference 2
ii) The sum of the first forty terms 2
iii) The value of n for which the sum of the series is first negative. 2
a) If $f(x)=x^{2}-x$ find the simplest expression for $f(x+h)$
b) Express $0.42+0.0042+0.000042+\ldots$. as a simplified fraction
c) A function $y=f(x)$ is defined as follows:
$f(x)= \begin{cases}-2, & x \leq-1 \\ x+1, & -1<x<2 \\ x^{2}+1, & x \geq 2\end{cases}$
i) Evaluate $f(-1)+f(2) \quad 2$
ii) Write an expression for $f\left(a^{2}+2\right)$
d) Solve for x
i) $4^{x}=12(2)^{x}-32$2
ii) $2 \log _{5} 3=\log _{5} x-\log _{5} 6$ 2

2014 Year 11 Mathematics Yearly - Solutions
Question 1
(a) $2 x-3 y-23=0 \quad(-1,-8)$

$$
2(-1)-3(-8)-23=-1 \quad(\neq 0)
$$

$(-1,-8)$ not on line
(b)

$$
\begin{aligned}
& 2^{x}=3 \\
& \log 2^{x}=\log 3 \\
& x \log 2=\log 3 \\
& x=\frac{\log 3}{\log 2} \approx 1.585 \quad(3 \text { dp. })
\end{aligned}
$$

(c)

$$
\left(-\frac{27}{8}\right)^{-43}=\left(-\frac{3}{2}\right)^{-4}=\frac{16}{81}
$$

$$
\begin{aligned}
& (d)(1) \log _{2}\left(\frac{b}{c}\right)=\log _{a} b-\log _{a} c=2.5 \\
& \text { (11) } \log _{a}(b c)^{2}=2\left(\log _{a} b+\log _{a} c\right) \\
& =6
\end{aligned}
$$

(e) (i) $f(x)=(3 x+1) \quad f(-x)=-3 x+1$
neither
(ii) $f(x)=x^{4}-x^{2}, f(-x)=x^{4}-x^{2}$
even.
(f) $a=2, T_{4}=128$

$$
\begin{aligned}
a r^{3} & =128 \\
r^{3} & =64 \\
r & =4
\end{aligned}
$$

Question 2
(a) $\frac{24}{36}=\frac{16}{24}=\frac{2}{3}$
\therefore ceometric
(b)

$$
\begin{aligned}
\operatorname{Lim}_{x \rightarrow} & =\frac{x^{2}-x-12}{x-4}=\lim _{x \rightarrow 4} \frac{(x-4)(x+3)}{x-4} \\
& =\operatorname{Lim}_{x \rightarrow 4} x+3=7
\end{aligned}
$$

(c) (i)

$$
\begin{aligned}
f(x) & =4 x^{2}-x+1 \quad f^{\prime} x=8 x-1 \\
f(x) & =3 x^{-\frac{1}{3}}, \quad f(x)=-x^{-\frac{4}{3}} \\
& =-\frac{1}{\sqrt[3]{x^{4}}}
\end{aligned}
$$

(ii)
(iii)

$$
\begin{aligned}
& f(x)=\frac{3 x^{5}-2 x^{3}+5}{x^{2}}=3 x^{3}-2 x+5 x^{-2} \\
& f^{\prime}(x)=9 x^{2}-2-\frac{10}{x^{3}}
\end{aligned}
$$

(IV)

$$
\begin{aligned}
f(x) & =\left(3 x^{2}-3\right)^{\frac{1}{2}} f^{\prime}(x)=\frac{1}{2}\left(3 x^{2}-3\right)^{-\frac{1}{2}} \times 6 x \\
& =\frac{3 x}{\sqrt{3 x^{2}-3}}
\end{aligned}
$$

(v)

$$
\begin{aligned}
f(x) & =\frac{3 x^{2}}{5-3 x}=\frac{u}{v} f(x)=\frac{v u^{\prime}-u v^{\prime}}{v^{2}} \\
f^{\prime}(x) & =\frac{(5-3 x) \times 6 x-3 x^{2}(-3)}{(5-3 x)^{2}} \\
& =\frac{30 x-18 x^{2}+9 x^{2}}{(5-3 x)^{2}} \\
& =\frac{30 x-9 x^{2}}{(5-3 x)^{2}}
\end{aligned}
$$

Question 3
(a) ib $y=x^{3}-1$

$$
\begin{aligned}
& y=x-1 \\
& y=0 \quad x=1,(1,0), x=0 \quad y=-1(0,-1)
\end{aligned}
$$

(ba) (ii)

(iii)

$$
\begin{aligned}
& y=x^{3}-1 \quad, \quad, \quad x=1 \quad y^{\prime}=3 \\
& y^{\prime}=3 x^{2} \quad, \quad(1,0) \\
& y^{-y_{1}}=m\left(x-x_{1}\right) \quad \\
& y-0=3(x-1) \quad, \quad y=3 x-3
\end{aligned}
$$

$$
\begin{aligned}
& \text { (b) } \begin{aligned}
& f(x)=15 x^{-2}-9 x^{3}, f^{\prime}(x)=-30 x^{-3}-27 x^{2} \\
& f(-1)=-30(-1)-27(1)=3 \\
& \text { (c) } \lim _{h \rightarrow 0}\left(\frac{x+h)^{2}-\frac{\left(x^{2}-3 x\right)}{h}}{h}=\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-3(x+h)-\left(x^{2}-3 x\right)}{h}\right. \\
&=\lim _{h \rightarrow 0} \frac{2 x h+h^{2}-3 h}{h} \\
&=\lim _{h \rightarrow 0} 2 x+h-3=2 x-3
\end{aligned}
\end{aligned}
$$

(d)

$$
\begin{aligned}
& \frac{\left(-2 x^{\frac{1}{2}} y^{\frac{1}{3}}\right)^{2}}{\left(3 x^{-1} y\right)^{\frac{1}{3}}} \times \frac{4 x^{\frac{1}{3}} y^{\frac{1}{3}}}{\left(x^{-1} y\right)^{\frac{1}{3}}} \\
= & \frac{16 x^{\frac{4}{3}} y}{3^{\frac{1}{3}} x^{-\frac{2}{3}} y^{\frac{2}{3}}} \\
= & \frac{16}{\sqrt[3]{3}} x^{2} y^{\frac{1}{3}}
\end{aligned}
$$

4)a) i)

$$
\begin{aligned}
\alpha+\beta & =-\frac{b}{a} \\
& =-\frac{5}{2}
\end{aligned}
$$

ii)

$$
\begin{aligned}
\alpha \beta & =\frac{c}{a} \\
& =-\frac{1}{2}
\end{aligned}
$$

iii)

$$
\begin{aligned}
\frac{1}{\alpha}+\frac{1}{\beta} & =\frac{\alpha+\beta}{\alpha \beta} \\
& =\frac{\left(-\frac{5}{2}\right)}{\left(-\frac{1}{2}\right)} \\
& =5
\end{aligned}
$$

iv)

$$
\begin{aligned}
\alpha^{2}+\beta^{2} & =(\alpha+\beta)^{2}-2 \alpha \beta \\
& =\left(-\frac{5}{2}\right)^{2}-2\left(-\frac{1}{2}\right) \\
& =\frac{29}{4}
\end{aligned}
$$

b) i)

$$
\begin{aligned}
x^{2}-4 x & =4 y \\
x^{2}-4 x+4 & =4 y+4 \\
(x-2)^{2} & =4(y+1)
\end{aligned}
$$

ii) In the form $(x-h)^{2}=4 a(y-k)$

$$
\begin{aligned}
-4 a & =4 \\
a & =1
\end{aligned}
$$

Vertex $(2,-1)$
Focus $(2,0)$
iii) $y=-2$
5) a) i)

ii) Domain: $x>-2$

Range: all real y.
b)

$$
A(x-1)^{2}+B x+C \equiv x^{2}
$$

equate coefficients of x^{2}

$$
\begin{aligned}
& A=1 \\
& 10 f x=0
\end{aligned}
$$

$$
\text { Let } x=0
$$

$$
\begin{aligned}
& \text { let } x=0 \\
& A((0)-1)^{2}+B(0)+C=(0)^{2} \\
& A+C=0 \\
& C=-A \\
& C=-1
\end{aligned}
$$

$$
\begin{aligned}
& \text { let } x=1 \\
& A(\text { (i) } 1)^{2}+B(1)+C=(1)^{2} \\
& B+C=1 \\
& B+(-1)=1 \\
& B=2
\end{aligned}
$$

c)

$$
\begin{gather*}
T_{9}=78 \\
T_{17}=50 \\
T_{n}=a+(n-1) d \\
a+8 d=78 \tag{1}\\
a+16 d=50 \\
(2)-(1) \\
8 d=-28 \\
d=-3.5
\end{gather*}
$$

sub (3) into (1)

$$
\begin{gathered}
a+(-28)=78 \\
a=106
\end{gathered}
$$

ii)

$$
\begin{aligned}
S_{n} & =\frac{n}{2}(2 a+(n-1) d) \\
S_{40} & =\frac{(40)}{2}(2(106)+((40)-1)(-3.5)) \\
& =1510
\end{aligned}
$$

iii)

$$
\begin{aligned}
& S_{n}<0 \\
& \frac{2}{2}(2(106)+(n-1)(-3.5))<0 \\
& \frac{n}{2}(215.5-3.5 n)<0
\end{aligned}
$$

$$
\begin{aligned}
& n>\frac{431}{7} \\
& n>61.571428 \\
& n=62
\end{aligned}
$$

6) a)

$$
\begin{aligned}
f(x)= & x^{2}-x \\
f(x+h)= & (x+h)^{2}-(x+h) \\
= & x^{2}+2 x h+h^{2}-x-h \\
& (x+h)(x+h-1)
\end{aligned}
$$

b)

$$
\begin{array}{rl}
0.42+0.0042+0.0000 & 42 t \ldots \\
S_{\infty} & =\frac{a}{1-r} \\
S_{\infty} & =\frac{\left(\frac{42}{100}\right)}{1-\left(\frac{1}{100}\right)} \\
& =\frac{14}{33}
\end{array}
$$

or

$$
\begin{aligned}
& 0.42=0.42+0.0042+0.000042+\ldots \\
& \text { let } x=0.4242 \ldots \\
& 100 x=42.4242 \ldots \\
& 99 x=42 \\
& x=\frac{42}{99} \\
& x=\frac{14}{33}
\end{aligned}
$$

c) i)

$$
\begin{aligned}
f(-1)+f(2) & =[-2]+\left[(2)^{2}+1\right] \\
& =3
\end{aligned}
$$

ii)

$$
\begin{aligned}
f\left(a^{2}+2\right) & =\left(a^{2}+2\right)^{2}+1 \quad \text { Note: } a^{2}+2 \geqslant 2 \\
& =a^{4}+2 a^{2}+4+1 \\
& =a^{4}+2 a^{2}+5 \quad
\end{aligned}
$$

d) i)

$$
\begin{aligned}
& 4^{x}=12(2)^{x}-32 \\
& \left(2^{2}\right)^{x}-12(2)^{x}+32=0 \\
& \left(2^{x}\right)^{x}-12(2)^{x}+32=0
\end{aligned}
$$

$$
\text { let } y=2^{x}
$$

$$
\begin{array}{ll}
y^{2}-12 y+32=0 & +\left.\right|_{-12} ^{32} \\
(y-8)(y-4)=0 & \\
y=8 & \text { or } y=4 \\
2^{x}=8 & 2^{x}=4 \\
2^{x}=2^{3} & 2^{x}=2^{2} \\
\therefore x=3,2
\end{array}
$$

ii)

$$
\begin{aligned}
2 \log _{5} 3 & =\log _{5} x-\log _{5} 6 \\
\log _{5} 3^{2} & =\log _{5}\left(\frac{x}{6}\right) \\
\frac{x}{6} & =9 \\
x & =54
\end{aligned}
$$

