

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

2014

YEAR 11 Yearly Examination

Mathematics

General Instruction

- Reading Time 5 Minutes
- Working time 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators maybe used.
- Each Section is to be returned in a separate bundle.
- Marks may **NOT** be awarded for messy or badly arranged work.
- All necessary working should be shown in every question.
- Answer in simplest exact form unless otherwise instructed

Total Marks - 75

- Attempt questions 1-6
- Hand up in 2 sections clearly marked A & B

Examiner:

T.Evans

2

a) Determine whether the point (-1, -8) lies on the line 2x - 3y - 23 = 0 2

b) Solve
$$2^x = 3$$
 2

Find the value of
$$\left(\frac{-27}{8}\right)^{\frac{-4}{3}}$$
 1

d) Given that $\log_a b = 2.75$ and $\log_a c = 0.25$, find the value of:

i)
$$\log_a\left(\frac{b}{c}\right)$$

ii) $\log_a(bc)^2$

e)	State whether the following are ODD, EVEN or neither:	1
	i) $f(x) = 3x + 1$	1
	ii) $f(x) = x^4 - x^2$	

a)	For the following sequence: 36, 24, 16,	2
	Determine whether it is an Arithmetic or Geometric Progression, showing reasons.	

b) Find
$$\lim_{x \to 4} \frac{x^2 - x - 12}{x - 4}$$
 2

- **c)** Differentiate
 - i) $4x^2 x + 1$ 1

ii)
$$\frac{3}{\sqrt[3]{x}}$$
 2

iii)
$$\frac{3x^5 - 2x^3 + 5}{x^2}$$
 2

iv)
$$\sqrt{3x^2 - 3}$$
 2

$$v) \quad \frac{3x^2}{5-3x} \tag{2}$$

13 Marks

- a) i) Find all the x & y-intercepts for the curve with the equation 2 $y = x^3 - 1$.
 - ii) Neatly sketch the curve $y = x^3 1$, showing the information from 2 part i).
 - iii) Find the equation of the tangent to the curve $y = x^3 1$ at the 2 point where x = 1.
- **b)** If $f(x) = 15x^{-2} 9x^3$, find the value of f'(-1).
- **c)** Differentiate $f(x) = x^2 3x$ by first principles using the definition 2 $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$

d)
Simplify
$$\frac{\left(-2x^{\frac{1}{2}}y^{\frac{1}{3}}\right)^2}{\left(3x^{-1}y\right)^{\frac{1}{3}}} \times \frac{4x^{\frac{1}{3}}y^{-\frac{1}{3}}}{\left(x^{-1}y\right)^{\frac{1}{3}}}$$
 3

2

a) The equation $2x^2 + 5x - 1 = 0$ has roots α and β . Find the values of:

i)	$\alpha + \beta$	1
ii)	lphaeta	1
iii)	$\frac{1}{\alpha} + \frac{1}{\beta}$	2
iv)	$lpha^2 + eta^2$	2

iv)
$$\alpha^2 + \beta^2$$

Consider the parabola $4y = x^2 - 4x$ b)

i)	Show, algebraically, how the parabola can be expressed in the	2
	form $(x-2)^2 = 4(y+1)$	
ii)	Write down the coordinates of the vertex and the focus.	2

iii) Find the equation of the directrix.

Question Five 13		13 Marks
a)	i) Sketch $y = \log_2(x+2)$, showing the x & y-intersections and the	2
	asymptote.	
	ii)Hence, state the domain and range of $y = \log_2(x+2)$.	2
b)	Find <i>A</i> , <i>B</i> & <i>C</i> such that $A(x-1)^2 + Bx + c = x^2$	3
c)	In a certain arithmetic series the 9^{th} term is 78, and the 17^{th} term is	S
	50. Find:	
	i) The first term and the common difference	2
	ii) The sum of the first forty terms	2
	iii) The value of <i>n</i> for which the sum of the series is first negative	e. 2

Question 6		12 Marks
a)	If $f(x) = x^2 - x$ find the simplest expression for $f(x+h)$	2
b)	Express $0.42 + 0.0042 + 0.000042 + \dots$ as a simplified fraction	2
c)	A function $y = f(x)$ is defined as follows: $f(x) = \begin{cases} -2, & x \le -1 \\ x+1, & -1 < x < 2 \\ x^2+1, & x \ge 2 \end{cases}$	
	i) Evaluate $f(-1) + f(2)$	2
	ii) Write an expression for $f(a^2 + 2)$	2
d)	Solve for <i>x</i>	

i)
$$4^x = 12(2)^x - 32$$
 2

ii)
$$2\log_5 3 = \log_5 x - \log_5 6$$
 2

End of Examination

2014 Year 11 Mathematics Yearly - Solutions

$$\frac{Question 1}{2\pi - 3y - 23 = 0} (-1, -2)$$

$$2(-1) - 3(-2) - 23 = -1 (\neq 0)$$

$$(-1, -8) \text{ not on fine}$$

$$(b) \quad 2^{x} = 3$$

$$\log 2^{z} = \log 3$$

$$x \quad \log 2 = \log 3$$

$$x \quad \log 2 = \log 3$$

$$x = \frac{\log 3}{2} \approx 1.585 (3d.p.)$$

$$(c) \quad \left(-\frac{27}{8}\right)^{-\frac{4}{3}} = \left(-\frac{3}{2}\right)^{-\frac{4}{3}} = \frac{16}{81}$$

$$(d)(1) \quad \log_{2}(bc)^{2} = 2(\log_{2}b + \log_{2}c)$$

$$= \frac{6}{6}$$

$$(c) \quad (1)f(2) = (3x+1) \quad f(-2) = -3x+1$$

$$ne \ 1 \text{ ther}$$

$$(f) \quad Q = 2, \quad T_{4} = 128$$

$$Qr^{3} = 128$$

$$r^{3} = 64$$

$$(f) = 4$$

$$\frac{@ueshon 2}{3c} = \frac{16}{24} = \frac{7}{3}$$

$$\therefore Geometric$$

$$(b) \lim_{x \to 2} = \frac{\chi^2 - \chi - 12}{x - 4} = \lim_{x \to 4} \frac{(x - 4)\chi + 3}{x - 4}$$

$$= \lim_{x \to 9} \chi + 3 = 7.$$

$$(c)(1) \quad f(0) = \frac{4\chi^2 - \chi + 1}{3x^{-2}}, \quad f(z) = -\chi^{-5}$$

$$(ii) \quad f(x) = \frac{3\chi^2 - \chi^2 + 5}{x^2} = 3\chi^3 - 2\chi + 5\chi^{-2}$$

$$f(x) = \frac{3\chi^2 - 2\chi^2 + 5}{x^2} = 3\chi^3 - 2\chi + 5\chi^{-2}$$

$$(iv) \quad f(x) = (3\chi^2 - 3)^{\frac{1}{2}} \quad f'(x) = \frac{1}{2}(3\chi^2 - 3)^{-\frac{1}{2}} \times 6\chi$$

$$= \frac{3\chi}{\sqrt{3\chi^2 - 3}}$$

$$(v) \quad f(x) = \frac{3\chi^2}{5 - 3\chi} = \frac{1}{\sqrt{2}} \quad f'(x) = \frac{\sqrt{1}}{\sqrt{2}}$$

$$f'(x) = \frac{(5 - 3\chi) \times 6\chi}{(5 - 3\chi)^2}$$

$$= \frac{30\chi - 4\chi^2}{(5 - 3\chi)^2}$$

ų

•

.

.

 $(4)a)i) \alpha + \beta = -\frac{b}{a}$ = - 5 $ii) \neq \beta = \frac{c}{\beta}$ $\frac{111}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta}$ = (-<u>5</u>) $(-\frac{1}{2})$ = 5 $iv) \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2 \varkappa \beta$ $=\left(\frac{-5}{2}\right)^{2}-2\left(-\frac{1}{2}\right)$ = 29 4 b) i) $\chi^2 - 4\chi = 4y$ $\chi^2 - 4\chi + 4 = 4y + 4$ $(\chi - 2)^2 = 4(y + 1)$ ii) In the form (x-h)2= 4a (y-k) 4a=4 a =1 (2,-1) Vertex (2,-1) Focus (2,0) iii) y = -2

 $\frac{7_{y-2}}{y-2} \frac{\log(y+2)}{y-2}$ <u>5)a)i)</u> t Ł -21 >n Domain: 227-2 Range : all real y \hat{n}) b) $A(x-1)^2 + Bx + C \equiv x^2$ equate coefficients of x^2 A = 1 1eF = 0 $\frac{A((0)-1)^{2}+B(0)+(0)^{2}}{A+C=0}$ c = -Ac = -1 let x=I $A((1)-1)^{2} + B(1) + C = (1)^{2}$ B + C = 1 $R \neq (-1) = 1$ B = 2c) $T_{g} = 78$ $T_{17} = 50$ $T_n = \alpha + (n-1)c($ a +8d =78 (î a + 16d = 502 -(1) 8d = -28 B d = -3.5

sub 3 into D a + (-28) = 78a = 106ii) $S_n = \frac{n}{2} (2a + (n-1)d)$ $S_{40} = \frac{(40)}{2} \left(2(106) + ((40) - 1)(-3.5) \right)$ = 1510 iii) $S_n < O$ $\frac{n}{2}(2(106) + (n-1)(-305)) < 0$ $\frac{h}{5}\left(215\cdot5-3\cdot5n\right)<0$ 4<u>31</u> 7 Ô since n is a positive integer n7431 n 7 61.571428 n = 62

 $(\epsilon)a) f(a) = x^2 - \pi$ $f(n+h) = (n+h)^{2} - (n+h)$ = $x^{2} + 2nh + h^{2} - n - h$ or (x+h)(x+h-1) 0.42+0.0042+0.000042+ 6) $S_{\infty} = \frac{\alpha}{1-r}$ $S_{\infty} = \left(\frac{42}{100}\right)$ $1 - \left(\frac{1}{1 - 0}\right)$ OR 0.42 = 0.42 + 0.0042 + 0.000042 + ...let x=0.4242 100n = 42.4242 ----99n = 42 $n = \frac{42}{99}$ $x = \frac{14}{3.3}$ $(c)_{i}_{j}_{j} + f(1)_{j} + f(2)_{j} = [-2]_{j} + [(2)_{j}^{2} + 1]_{j}$ - 3 $f(a^{2}+2) = (a^{2}+2)^{2} + 1$ Note: a2+27,2 $= a^{4} + 2a^{2} + 4 + 1$ $= a^{4} + 2a^{2} + 5$

d) i) $4^{n} = 12(2)^{n} - 32$ $(2^2)^{n} - 12(2)^{n} + 32 = 0$ $(2^{*})^{2} - 12(2)^{*} + 32 = 0$ let $y=2^n$ x132 y2-12y+32=0 12 (y - 8)(y - 4) = 0y=8 or y=4 $\frac{2^{2}=8}{2^{2}=2^{3}} = \frac{2^{2}=4}{2^{2}=2^{2}}$:. x= 3, 2 $ii) 2 \log_5^3 = \log_7 - \log_6$ $log, 3^2 = log_F\left(\frac{\chi}{6}\right)$ $\frac{\chi}{6} = 9$ n = 54