Sydney Grammar School

2014 Annual Examination

FORM V

MATHEMATICS 2 UNIT

Wednesday 27th August 2014

General Instructions

- Writing time - 2 hours
- Write using black or blue pen. plates may be used.

Total - 100 Marks

- All questions may be attempted.

Section I-9 Marks

- Questions 1-9 are of equal value. choice on the sheet provided.

Section II - 91 Marks

- Questions 10-16 are of equal value.

Checklist

- SGS booklets - 7 per boy
- Multiple choice answer sheet
- Candidature - 185 boys
- Board-approved calculators and tem-
- Record your solutions to the multiple
- All necessary working should be shown.
- Start each question in a new booklet.

5A: BDD	5B: MLS	5C: LYL	5D: LRP
5E: PKH	5F: BR	5G: SG	5P: REJ
5Q: NL	5R: TCW		

Collection

- Write your name, class and master on each booklet and on your multiple choice answer sheet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Place your multiple choice answer sheet inside the answer booklet for Question Ten.
- Write your name and master on this question paper and submit it with your answers.

5C: LYL
5D: LRP
5E: PKH
5R: TCW

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

QUESTION ONE

The gradient of the line $3 x-2 y=6$ is
(A) $\frac{2}{3}$
(B) $-\frac{2}{3}$
(C) $\frac{3}{2}$
(D) $-\frac{3}{2}$

QUESTION TWO

The exact value of $\cos 210^{\circ}$ is
(A) $\frac{1}{2}$
(B) $-\frac{1}{2}$
(C) $\frac{\sqrt{3}}{2}$
(D) $-\frac{\sqrt{3}}{2}$

QUESTION THREE

The expression $\sqrt{16 x^{16}}$ simplifies to
(A) $\quad 8 x^{4}$
(B) $4 x^{8}$
(C) $\quad 4 x^{4}$
(D) $8 x^{8}$

QUESTION FOUR

Which of the following is rational?
(A) $\sqrt[3]{18}$
(B) $\sqrt{8}$
(C) $0 \cdot \dot{4} \dot{9}$
(D) π

QUESTION FIVE

In the diagram above which of the following is correct?
(A) $x=\frac{12 \sin 50^{\circ}}{\sin 70^{\circ}}$
(B) $x=\frac{6 \sqrt{3}}{\sin 50^{\circ}}$
(C) $x=\frac{12 \sin 70^{\circ}}{\sin 50^{\circ}}$
(D) $x=\frac{6}{\sin 50^{\circ}}$

QUESTION SIX

The quadratic equation $2 x^{2}-4 x+6=0$ has roots α and β. Which of the following is true?
(A) $\alpha+\beta=4$
(B) $\alpha+\beta=2$
(C) $\alpha \beta=6$
(D) $\alpha \beta=-6$

QUESTION SEVEN

What is the domain of $y=\sqrt{x^{2}-1}$?
(A) $x \geq 1$
(B) $\quad x \geq 1$ or $x \leq-1$
(C) $x>1$
(D) $\quad-1 \leq x \leq 1$

QUESTION EIGHT

For the geometric sequence $2,-4,8,-16, \ldots$ which of the statements below is true?
(A) The limiting sum is $\frac{2}{3}$.
(B) The sequence does not have a limiting sum.
(C) The nth term is never greater than 100000 .
(D) The sum of the first n terms is never less than -100000 .

QUESTION NINE

Let $y=\frac{x}{1+x}$. A correct expression for the derivative $\frac{d y}{d x}$ is:
(A) $-\frac{1}{(1+x)^{2}}$
(B) $\frac{2 x+1}{(1+x)^{2}}$
(C) $\frac{1}{(1+x)^{2}}$
(D) $\frac{2 x-1}{(1+x)^{2}}$

SECTION II - Written Response

Answers for this section should be recorded in the booklets provided.
Show all necessary working.
Start a new booklet for each question.

QUESTION TEN (13 marks) Use a separate writing booklet. Marks
(a) Solve $\frac{x}{2}+2 x=5$.
(b) Differentiate $y=x^{3}-5 x$.
(c) Sketch the line $y=2 x-6$, marking the intercepts with the axes.
(d) Expand and simplify $(2 x-3)^{2}$.
(e) Simplify:
(i) $\log _{2} 30-\log _{2} 6$
(ii) $\log _{3} 81$
(f) Differentiate $y=x^{\frac{1}{2}}+x^{-1}$.
(g) Given $f(x)=x^{\frac{3}{2}}-x$, evaluate $f(9)$.
(h) Write down the range of $y=\sqrt{4-x}$.
(a) Solve the equation $\tan \theta=-0 \cdot 64$, for $0^{\circ} \leq \theta \leq 360^{\circ}$. Leave your answers correct to the nearest minute.
(b) Solve $x^{2}+2 x-24=0$.
(c) Find the gradient of the line passing through $A(2,-4)$ and $B(-6,2)$.
(d) Solve $|x-5|=3$.
(e) Differentiate $y=(2 x+3)^{5}$.
(f) Rationalise the denominator of $\frac{6}{3-\sqrt{6}}$, giving your answer in simplest form.

QUESTION TWELVE (13 marks) Use a separate writing booklet.
(a) Find the gradient of the tangent to the curve $y=x^{2}-4 x$ when $x=-4$.
(b) Simplify $\sqrt{50}-2 \sqrt{8}$.
(c) Solve:
(i) $8^{x}=2^{2 x+1}$
(ii) $\log _{2} x=3$
(iii) $2-x \leq 5$
(d) For the arithmetic sequence $60,56,52 \ldots$ find:
(i) the twenty-first term,
(ii) the sum of the first twenty one terms.
(e) The numbers $3, x$ and 12 are consecutive terms of a geometric sequence. What are the possible values for x ?
(a) Sketch the following functions on separate axes, showing any x-intercepts, y-intercepts and asymptotes:

$$
\begin{aligned}
& \text { (i) } y=\frac{4}{x-2} \\
& \text { (ii) } y=-\sqrt{9-x^{2}}
\end{aligned}
$$

(b) For what values of k does the quadratic equation $2 x^{2}-4 x+(k+2)=0$ have no real roots?
(c) Differentiate $y=\frac{1}{(2 x-5)^{3}}$.
(d) Use the product rule to differentiate $y=x^{3}(2+x)^{5}$. Leave your answer in fully factored form.
(e) Find the equation of the tangent to $y=4 x-x^{3}$ at the point when $x=-2$.

QUESTION FOURTEEN (13 marks) Use a separate writing booklet.
(a) Simplify $2^{x} \times 3^{x}$.
(b) The first term of a geometric sequence is 5 and the eighth term is 640 .
(i) Find the 12th term.
(ii) Find the sum of the first 8 terms.
(c) Solve the equation $2 \cos ^{2} \theta=1$, for $0^{\circ} \leq \theta \leq 360^{\circ}$.
(d) Find the points of intersection of the straight line $y=2 x+5$ and the hyperbola $y=\frac{3}{x}$.
(e) Use the quotient rule to differentiate $y=\frac{x}{x^{2}+1}$.
(a) Using the perpendicular distance formula from a point to a line, find the values of a for which the line $4 x+3 y-a=0$ is 4 units from the point $(2,-1)$.
(b) In triangle $A B C, \angle B A C=24^{\circ}, A B=2 \cdot 6$ and $B C=1 \cdot 1$. Find the possible values of $\angle A C B$ to the nearest degree.
(c) Prove that $(1-\cos A)(1+\sec A)=\sin A \tan A$.
(d) Two men are at an intersection of two straight roads which cross at an angle of 58°. They set off at the same time with one man walking at $6 \mathrm{~km} / \mathrm{h}$ along one road and the other walking along the other road at $5 \mathrm{~km} / \mathrm{h}$.
How long before they are 20 km apart, as the crow flies, to the nearest minute?

QUESTION SIXTEEN (13 marks) Use a separate writing booklet.
(a) Find the value of $7+14+21+\ldots+1008$.
(b) Using first principles differentiation, find the derivative of $f(x)=4 x-x^{2}$.
(c) Simplify $\log _{a} b^{2} \times \log _{b} a^{3}$.
(d) (i) Find the equation of the normal to the hyperbola $y=\frac{1}{x}$ at the point A where $x=2$.
(ii) The normal at A meets the hyperbola again at B. Find the co-ordinates of M the mid-point of interval $A B$.
(iii) How many times does the circle with diameter $A B$ meet this hyperbola? You must justify your answer.

END OF EXAMINATION

SGS Annual 2014.................. Form V Mathematics 2 Unit Page 8

BLANK PAGE

Sydney Grammar School

NAME: \qquad

Class: \qquad Master:

Question One

2014
Annual Examination
FORM V
MATHEMATICS 2 UNIT
Wednesday 27th August 2014

- Record your multiple choice answers by filling in the circle corresponding to your choice for each question.
- Fill in the circle completely.
- Each question has only one correct answer.

A

B

C

D \bigcirc
$\mathrm{A} \bigcirc$
B$\mathrm{C} \bigcirc$
D \bigcirc

Question Three

A
B
C

D \bigcirc

Question Four

A \bigcirc
B$\mathrm{C} \bigcirc$
D \bigcirc

Question Five
A \bigcirc
B \bigcirc
$\mathrm{C} \bigcirc$
D \bigcirc

Question Six

A

B
C

D

Question Seven

A \bigcirc
BD \bigcirc

Question Eight

A \bigcirc
B \qquad
C

D

Question Nine
A
B

$\mathrm{C} \bigcirc$
D

