Sydney Grammar School

FORM V

MATHEMATICS ADVANCED

Wednesday 4th September 2019

General Instructions

- Writing time - 2 hours
- Write using black pen.
- NESA-approved calculators may be used.

Total - 80 Marks

- All questions may be attempted.

Section I-8 Marks

- Questions 1-8 are of equal value.
- Record your answers to the multiple choice on the sheet provided.

Section II - 72 Marks

- Questions 9-14 are of equal value.
- All necessary working should be shown.
- Start each question in a new booklet.

Collection

- Write your candidate number on each answer booklet and on your multiple choice answer sheet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Write your candidate number on this question paper and hand it in with your answers.
- Place everything inside the answer booklet for Question Nine.

Checklist

- SGS booklets - 6 per boy
- Multiple choice answer sheet
- Reference Sheet
- Candidature - 177 boys

Examiner
 REJ

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

QUESTION ONE

Which of the following expressions is equivalent to $(3 \sqrt{5}-5)^{2}$?
(A) 20
(B) $70-30 \sqrt{5}$
(C) $20-30 \sqrt{5}$
(D) 70

QUESTION TWO

It is known that 14 apples and 4 oranges cost $\$ 8$, and 5 apples and 4 oranges cost $\$ 4.40$. If $\$ x$ represents the cost of an apple and $\$ y$ represents the cost of an orange, which of the following pairs of simultaneous equations could be used to find the cost of each apple and orange?
(A) $4 x+14 y=8$ and $5 x+4 y=4 \cdot 4$
(B) $14 x+4 y=8$ and $5 x+4 y=4 \cdot 4$
(C) $14 x+4 y=8$ and $4 x+5 y=4 \cdot 4$
(D) $4 x+14 y=8$ and $4 x+5 y=4 \cdot 4$

QUESTION THREE

Which expression is equivalent to $\log _{a} 2 m-\log _{a} m$?
(A) $\log _{a} m$
(B) $\frac{\log _{a} 2 m}{\log _{a} m}$
(C) $\log _{a} 2 m$
(D) $\log _{a} 2$

QUESTION FOUR

Which of the following is the derivative of $e^{2 x}$?
(A) $2 e^{2 x-1}$
(B) $2 e^{2 x}$
(C) $2 x e^{2 x-1}$
(D) $e^{2 x}$

QUESTION FIVE

Which expression gives the correct area of the triangle above?
(A) $\frac{1}{2} \times 5 \times 3 \times \cos 94^{\circ}$
(B) $\frac{1}{2} \times 5 \times 6 \times \cos 94^{\circ}$
(C) $\frac{1}{2} \times 5 \times 3 \times \sin 94^{\circ}$
(D) $\frac{1}{2} \times 5 \times 6 \times \sin 94^{\circ}$

QUESTION SIX

What is the natural domain of the function $f(x)=\frac{1}{\sqrt{4-x^{2}}}$?
(A) $-2 \leq x \leq 2$
(B) $x \leq-2$ or $x \geq 2$
(C) $-2<x<2$
(D) $x<-2$ or $x>2$

QUESTION SEVEN

Each of the following experiments involves two events A and B. In which case are the events A and B independent?
(A) $P(A \mid B)=0.5$ and $P(A)=0.4$ and $P(B)=0.5$
(B) $P(A)=0.3$ and $P(B)=0.7$ and $P(A \cap B)=0.21$
(C) $P(A \mid B)=\frac{3}{4}$ and $P(A)=\frac{2}{5}$ and $P(B)=\frac{3}{10}$
(D) $P(A \cap B)=\frac{1}{5}$ and $P(A)=\frac{1}{5}$ and $P(B)=\frac{2}{3}$

QUESTION EIGHT

Let $f(x)=x^{2}+3 x-4$ and $g(x)=|x|$. What is the correct expression for $f(g(x))$?
(A) $f(g(x))= \begin{cases}x^{2}+3 x-4, & \text { for } x \geq 0, \\ x^{2}-3 x-4, & \text { for } x<0\end{cases}$
(B) $f(g(x))= \begin{cases}x^{2}-3 x-4, & \text { for } x \geq 0, \\ x^{2}+3 x-4, & \text { for } x<0\end{cases}$
(C) $f(g(x))= \begin{cases}x^{2}+3 x-4, & \text { for } x \leq-4 \text { or } x \geq 1, \\ -x^{2}-3 x+4, & \text { for }-4<x<1\end{cases}$
(D) $f(g(x))= \begin{cases}-x^{2}-3 x+4, & \text { for } x \leq-4 \text { or } x \geq 1, \\ x^{2}+3 x-4, & \text { for }-4<x<1\end{cases}$

SECTION II - Written Response

Answers for this section should be recorded in the booklets provided.
Show all necessary working.
Start a new booklet for each question.

QUESTION NINE (12 marks) Use a separate writing booklet. Marks
(a) Consider the function $f(x)=x^{2}-2 x+3$.
(i) Find the value of $f(2)$.
(ii) Find a simplified expression for $f(a+2)$.
(iii) Find a simplified expression for $f(a)+2$.
(b)

Classify the graph shown above as one-to-one, many-to-one, one-to-many or many-tomany.
(c) Rationalise the denominator of $\frac{2}{\sqrt{5}-2}$.
(d) Solve $|2 x-1|=11$.
(e)

The diagram above shows the graph of the semicircle $y=\sqrt{9-x^{2}}$. State the domain and range of this function.

QUESTION NINE (Continued)
(f) A bag contains 2 red discs and 3 white discs. Two discs are drawn from the bag without replacement. What is the probability that both discs are red?
(g) Find the exact value of:
(i) $\sin \frac{2 \pi}{3}$
(ii) $\cos \frac{5 \pi}{4}$

QUESTION TEN (12 marks) Use a separate writing booklet. Marks
(a) Find the derivative of each of the following functions.
(i) $y=2 x^{3}$
(ii) $y=\frac{1}{x^{2}}$
(iii) $y=(3 x+2)^{4}$
(iv) $y=\frac{x^{3}}{3 x+2}$
(b)

The diagram above shows a circle with centre O, radius 5 cm and $\angle P O Q=\frac{\pi}{4}$. The points P and Q lie on the circumference of the circle.
(i) Find the exact area of the sector $O P Q$.
(ii) Find the exact area of $\triangle O P Q$.
(iii) Hence find the exact area of the shaded minor segment.
(c) Find the equation of the tangent to the curve $y=e^{3 x+1}$ at the point $(0, e)$.
(d) Solve $\cos x=-\frac{\sqrt{3}}{2}$, for $0 \leq x \leq 2 \pi$.
(a) Sketch graphs of the following functions on separate number planes, showing all intercepts with the axes and other important features.
(i) $y=2^{x}-4$
(ii) $y=\frac{1}{x-3}$
(iii) $y=\log _{3} x$
(iv) $y=x(x-1)(x+1)(x+3)$
(b) Xena and Gabrielle and are going to sit their driving test. The probability that Xena passes her driving test is $\frac{2}{3}$. The probability that Gabrielle passes her driving test is $\frac{1}{4}$. Part of the probability tree diagram for this scenario is shown below.

Xena Gabrielle

(i) Copy and complete the tree diagram showing the probabilities on each branch.
(ii) Write a list of possible outcomes.
(iii) What is the probability that only one of the girls passes their driving test?

QUESTION TWELVE (12 marks) Use a separate writing booklet. Marks
(a) If $\sin \theta=-\frac{2}{5}$ and $\cos \theta>0$, find the exact value of $\tan \theta$.
(b) Consider the function $f(x)=x^{2}+7 x-10$.
(i) Write down an expression for $f(x+h)$.
(ii) Differentiate $f(x)$ from first principles to show that $f^{\prime}(x)=2 x+7$.
(iii) What is the gradient of the normal to $y=f(x)$ at the point $(1,-2)$?
(c)

The diagram above shows an unknown function $y=p(x)$.
The function $y=p(x)$ is transformed to give $y=-p(-x)$. Sketch $y=-p(-x)$ showing any intercepts with the axes and other important features.
(d) If $x=\log _{a} 3, y=\log _{a} 5$ and $z=\log _{a} 7$, write the expression $\log _{a}\left(\frac{75}{49 a}\right)$ in terms of x, y and z only.
(e) Determine whether the function $f(x)=\frac{x^{3}+3 x}{x^{4}+x^{2}-1}$ is even, odd or neither. You must show all working.
(a) On any given day in Sydney, the probability that it is raining is $\frac{1}{3}$, the probability that there is heavy traffic is $\frac{7}{12}$ and the probability that there is heavy traffic or it is raining is $\frac{2}{3}$.
(i) Find the probability that it is raining and there is heavy traffic.
(ii) Find the probability that there is heavy traffic given that it is raining.
(b)

A vertical tower is observed from two landmarks P and Q on level ground. From P, the angle of elevation to the top of the tower T is 30°. From Q, the angle of elevation to the top of the tower T is 60°. From the base of the tower B, P is on a bearing of $035^{\circ} \mathrm{T}$ and Q is on a bearing of $155^{\circ} \mathrm{T}$. It is known that P and Q are 200 m apart. Let h represent the height of the tower $B T$.
(i) Explain why $\angle P B Q=120^{\circ}$.
(ii) Show that $B P=\sqrt{3} h$ and write a similar expression for $B Q$.
(iii) Show that $\frac{13 h^{2}}{3}=200^{2}$ and hence find the height of the tower h. Give your answer correct to the nearest metre.

QUESTION THIRTEEN (Continued)
(c) In January 2018, a farmer accidentally spread a dangerous chemical on a paddock. The concentration of the chemical in the soil was initially measured to be $7 \mathrm{~kg} / \mathrm{ha}$. One year later, the concentration was found to be $3 \cdot 2 \mathrm{~kg} / \mathrm{ha}$.

It is known that the concentration C of the chemical in $\mathrm{kg} / \mathrm{ha}$ is given by the formula $C=C_{0} e^{-k t}$ where t is the time in years after the chemical was spread and C_{0} is a constant.
(i) Find the values of C_{0} and k, giving your answers in exact form.
(ii) It is safe to use the paddock when the concentration falls below $0.2 \mathrm{~kg} / \mathrm{ha}$. During which year will it first become safe for the farmer to use the paddock again?
(a) Prove that $\frac{(1-\sin \theta)(1+\sin \theta)}{\cos ^{2} \theta}=1$.
(b)

The diagram above shows a cone inscribed in a sphere. The sphere has radius a and centre O. The cone has a base of radius r and height x.
(i) Show that $r^{2}=2 a x-x^{2}$.
(ii) The volume of a cone is given by the formula $V=\frac{1}{3} A h$ where A is the area of the base and h is the perpendicular height of the cone. Show that the volume of this cone is given by $V=\frac{1}{3} \pi\left(2 a x^{2}-x^{3}\right)$.
(iii) Find the value of x so that $\frac{d V}{d x}=0$, given $0<x<2 a$.
(c)

The graph above shows the function $x=f(t)$.
Sketch a possible graph of $\frac{d x}{d t}$ as a function of t.

QUESTION FOURTEEN (Continued)
(d)

An advertising logo is formed from two circles which intersect as shown in the diagram above.

The circles intersect at A and B and have centres at O and C. The diagram above shows the radii $O A, O B, C A$ and $C B$ of each circle. The radius of the circle centred at O is 0.5 m and the radius of the circle centred at C is $\frac{\sqrt{3}}{2} \mathrm{~m}$. The length of $O C$ is 1 m .
(i) Show that $\angle O A C=\frac{\pi}{2}$.
(ii) Find the area of the quadrilateral $A O B C$.
(iii) Find the total area of the logo. Give your answer in exact form.

BLANK PAGE

SGS Annual 2019 Form V Mathematics Advanced Page 15

BLANK PAGE

SGS Annual 2019 Form V Mathematics Advanced Page 16

BLANK PAGE

Sydney Grammar School

2019
Annual Examination
FORM V
MATHEMATICS ADVANCED
Wednesday 4th September 2019

- Record your multiple choice answers by filling in the circle corresponding to your choice for each question.
- Fill in the circle completely.
- Each question has only one correct answer.

Question One

AB$\mathrm{C} \bigcirc$
D \bigcirc

Question Two

A \bigcirc
B
$\mathrm{C} \bigcirc$
D \bigcirc

Question Three

A \bigcirc
B \bigcirc
C
D \bigcirc

Question Four

A \bigcirc
B
\bigcirc
C

D \bigcirc

Question Five

A \bigcirc
B
C
D \bigcirc

Question Six

A
B

C

D

Question Seven

A \bigcirc
B
\bigcirc
C
D

Question Eight

A
B \bigcirc
C \bigcirc
D \bigcirc

Mathematics Advanced form V Solution o

Question l

$$
\begin{align*}
& (3 \sqrt{5}-5)^{2} \\
= & 45-30 \sqrt{5}+25 \\
= & 70-30 \sqrt{5} \tag{B}
\end{align*}
$$

Question 2

$$
\begin{aligned}
& 14 x+4 y=8 \\
& 5 x+4 y=4 \cdot 4
\end{aligned}
$$

Questions

$$
\begin{align*}
& \log _{a} 2 m-\log _{a} m \\
= & \log _{a} \frac{2 m}{m} \\
= & \log _{a} 2 \tag{D}
\end{align*}
$$

Question 4

$$
\frac{d}{d x} e^{2 x}=2 e^{2 x}
$$

Question 5

$$
\begin{align*}
A & =\frac{1}{2} a b \sin C \\
& =\frac{1}{2} \times 3 \times 5 \sin 94 \tag{C}
\end{align*}
$$

Question 6

$$
\begin{align*}
& 4-x^{2}>0 \\
& (2-x)(2+x)>0 \\
& -2<x<2 \tag{c}
\end{align*}
$$

Question 7

$$
\text { either } P(A \mid B)=P(A)
$$

$$
\text { or } \quad P(A \cap B)=P(A) \times P(B)
$$

$A \times$

$$
B \rightarrow P(A \cap B)=P(A) \times P(B)
$$

$$
\begin{equation*}
c \rightarrow X \tag{B}
\end{equation*}
$$

D x
Answer
Question 8

$$
\begin{aligned}
f(g(x)) & =|x|^{2}+3|x|-4 \\
& =x^{2}+3|x|-4 \\
& =\left\{\begin{array}{l}
x^{2}+3 x-4-x \rightarrow 0 \\
x^{2}-3 x-4 x<0
\end{array}\right.
\end{aligned}
$$

Question 9
a) $f(x)=x^{2}-2 x+3$
i) $f(2)=2^{2}-2 \times 2+3$

$$
=3
$$

ii)

$$
\begin{aligned}
f(a+2) & =(a+2)^{2}-2(a+2)+3 \\
& =a^{2}+4 a+4-2 a-4+3 \\
& =a^{2}+2 a+3
\end{aligned}
$$

ii)

$$
\begin{aligned}
f(a)+2 & =a^{2}-2 a+3+2 \\
& =a^{2}-2 a+5
\end{aligned}
$$

b) one-to - many
c)

$$
\begin{aligned}
& \frac{2(\sqrt{5}+2)}{(\sqrt{5}-2)(\sqrt{5}+2)} \\
= & \frac{2(\sqrt{5}+2)}{5-4} \\
= & 2 \sqrt{5}+4 \text { or } 2(\sqrt{5}+2)
\end{aligned}
$$

d) $|2 x-1|=11$
$2 x-1=11$

$$
2 x=12
$$

$$
x=6
$$

$$
\begin{aligned}
2 x-1 & =-11 \\
2 x & =-10 \\
x & =-5
\end{aligned}
$$

$$
x=60, x=-5
$$

e) Domain: $-3 \leqslant x \leqslant 3$

Range: $0 \leqslant y \leqslant 3$
f)

$$
\begin{aligned}
P(R R) & =\frac{2}{5} \times \frac{1}{4} \\
& =\frac{1}{10}
\end{aligned}
$$

g)

$$
\text { ;) } \begin{aligned}
& \sin \frac{2 \pi}{3} \\
= & \sin \pi / 3 \\
= & \frac{\sqrt{3}}{2}
\end{aligned}
$$

il)

$$
\begin{aligned}
& \cos \frac{5 \pi}{4} \\
= & -\cos \pi / 4 \\
= & -\frac{1}{\sqrt{2}}
\end{aligned}
$$

Question 10
a) i)

$$
\begin{aligned}
y & =2 x^{3} \\
\frac{d y}{d x} & =6 x^{2}
\end{aligned}
$$

ii)

$$
\begin{aligned}
y & =x^{-2} \\
\frac{d y}{d x} & =-2 x^{-3} \\
& =-\frac{2}{x^{3}}
\end{aligned}
$$

iii)

$$
\begin{aligned}
y & =(3 x+2)^{4} \\
\frac{d y}{d x} & =4(3 x+2)^{3} \times 3 \\
& =12(3 x+2)^{3}
\end{aligned}
$$

iv)

$$
\begin{aligned}
& u=x^{3} \quad v \\
& u^{\prime}=3 x^{2} \quad v^{\prime} \\
&=3 x+2 \\
& v^{2}=(3 x+2)^{2} \\
& \frac{d y}{d x}=\frac{3 x^{2}(3 x+2)-3 x^{3}}{(3 x+2)^{2}} \\
&=\frac{9 x^{3}+6 x^{2}-3 x^{3}}{(3 x+2)^{2}} \\
&=\frac{6 x^{3}+6 x^{2}}{(3 x+2)^{2}}
\end{aligned}
$$

b) i)

$$
\begin{aligned}
A & =\frac{r^{2} \theta}{2} \\
& =\frac{5^{2} \times \pi / 4}{2} \\
& =\frac{25 \pi}{8}
\end{aligned}
$$

ii)

$$
\begin{aligned}
A & =\frac{r^{2}}{2} \sin \theta \\
& =\frac{5^{2}}{2} \times \sin \pi / 4 \\
& =\frac{25}{2} \times \frac{1}{\sqrt{2}} \\
& =\frac{25 \sqrt{2}}{4}
\end{aligned}
$$

iii)

$$
\begin{aligned}
A & =\frac{25 \pi}{8}-\frac{25 \sqrt{2}}{4} \\
& =\frac{25 \pi-50 \sqrt{2}}{8}
\end{aligned}
$$

c)

$$
\begin{aligned}
y & =e^{3 x+1} \\
\frac{d y}{d x} & =3 e^{3 x+1} \\
m_{T} & =3 e^{0+1} \\
& =3 e \\
y-e & =3 e(x-0) \\
y & =3 e x+e
\end{aligned}
$$

d)

$$
\begin{aligned}
& \cos x=-\frac{\sqrt{3}}{2} \\
& \cos \alpha=\frac{\sqrt{3}}{2} \quad \alpha \text { is acute } \\
& \alpha=\frac{\pi}{6} \sqrt{2} \quad \phi 3 \\
& x=\pi-\frac{\pi}{6} 0 . \pi+\frac{\pi}{6} \\
& =\frac{5 \pi}{6} \text { o: } \frac{7 \pi}{6}
\end{aligned}
$$

Question II

ii)

iii)

iv)

x	-4	-3	-2	-1	$-\frac{1}{2}$	0	$\frac{1}{2}$	1	2
y	+	0	-	0	+	0	-	0	+

int $x=0,1,-1,-3$ table of signs

\checkmark connect intercepts
$\sqrt{ }$ correct graph
b)

ii)

Rena	Cabricllp
P	P
P	F
F	P
F	F

iii)

$$
\begin{aligned}
P \text { (only one fails) } & =P(P F)+P(F P) \\
& =\frac{2}{3} \times \frac{3}{4}+\frac{1}{3} \times \frac{1}{4} \\
& =\frac{7}{12}
\end{aligned}
$$

Question 12
a) $\sin \theta=\frac{-2}{5} \quad \cos \theta>0$

Quadrant 4
let $\sin \alpha=\frac{2}{5} \quad \alpha$ acute

$$
\begin{aligned}
x^{2} & =5^{2}-2^{2} \quad \text { (pythagoras' theorem) } \\
x^{2} & =21 \\
x & =\sqrt{21}
\end{aligned}
$$

$$
\begin{aligned}
\tan \theta & =-\tan \alpha \\
& =-\frac{z}{\sqrt{21}} v \\
& =-\frac{2 \sqrt{21}}{21}
\end{aligned}
$$

b) i)

$$
\begin{aligned}
f(x) & =x^{2}+7 x-10 \\
f(x+h) & =(x+h)^{2}+7(x+h)-10 \\
& =x^{2}+2 x h+h^{2}+7 x+7 h-10
\end{aligned}
$$

ii)

$$
\begin{aligned}
& f^{\prime}(x)= \\
&=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
&= \lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}+7 x+7 h-10-x^{2}-7 x+10}{h} \\
&= \lim _{h \rightarrow 0} \frac{2 x h+h^{2}+7 h}{h}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} 2 x+h+7 \quad \text { or showing } \\
& =2 x+7
\end{aligned}
$$

iii)

$$
\begin{aligned}
m_{T} & =2(1)+7 \\
& =9 \\
m_{N} & =-\frac{1}{9}
\end{aligned}
$$

c)

- xintercepos
- yinterceps
- shorppo.int
- comectorientatinar
- asyneprote clearly show.

$$
\begin{aligned}
& \sqrt{\text { Zot }} 5 \text { fecturg } \\
& \sqrt{\text { all Sfeanurg }}
\end{aligned}
$$

d)

$$
\begin{aligned}
& \log _{a}\left(\frac{75}{49 a}\right) \\
= & \log _{a} 75-\log _{a} 49 a \\
= & \log _{a} 3+2 \log _{a} 5-\left(\log _{a} 7^{2}+\log _{a} a\right) \\
= & \log _{a} 3+2 \log _{a} 5-2 \log _{a} 7-1 \\
= & x+2 y-2 z-1
\end{aligned}
$$

e)

$$
\begin{aligned}
& f(x)=\frac{x^{3}+3 x}{x^{4}+x^{2}-1} \\
& \begin{aligned}
f(-x) & =\frac{(-x)^{3}+3(-x)}{(-x)^{4}+(-x)^{2}-1} \\
& =\frac{-x^{3}-3 x}{x^{4}+x^{2}-1}
\end{aligned}
\end{aligned}
$$

showing not ever
$\neq f(x)$ So the function is notever

$$
\begin{aligned}
-f(-x) & =-\left(\frac{-x^{3}-3 x}{x^{4}+x^{2}-1}\right) \\
& =\frac{x^{3}+3 x}{x^{4}+x^{2}-1} \\
& =f(x)
\end{aligned}
$$

Mustexplicitly show either multiplying $f(-x)$ by -1 or multiplying $f(x)$ by -1 . showing odd

Since $f(x)=-f(-x)$ the function is odd.

Question 13
a) i)

$$
\begin{aligned}
P(R \cap H) & =\frac{1}{3}+\frac{7}{12}-\frac{2}{3} \\
& =\frac{1}{4}
\end{aligned}
$$

ii)

$$
\begin{aligned}
P(H \mid R)= & \frac{P(H \cap R)}{P(R)} \\
= & \frac{\frac{1}{4}}{1 / 3} \\
& =\frac{3}{4}
\end{aligned}
$$

b) i)

$$
\begin{aligned}
& \angle P B Q=155^{\circ}-35^{\circ} \quad \text { (adjacent angles) } \\
& \angle P B Q=120^{\circ}
\end{aligned}
$$

ii) $\operatorname{Tan} 30^{\circ}=\frac{h}{B P}$

$$
B P \times \frac{1}{\sqrt{3}}=h
$$

$B P=\sqrt{3} h$ as required

$$
\begin{array}{r}
\tan 60^{\circ}=\frac{h}{B Q} \\
\sqrt{3} \times B Q=h \\
B Q=\frac{h}{\sqrt{3}}
\end{array}
$$

iii)

$$
\begin{aligned}
200^{2} & =(\sqrt{3} h)^{2}+\left(\frac{h}{\sqrt{3}}\right)^{2}-2 \times \sqrt{3} h \times \frac{h}{\sqrt{3}} \cos 120^{\circ} \\
200^{2} & =3 h^{2}+\frac{h^{2}}{3}=2 h^{2}(-\cos 60) \\
200^{2} & =3 h^{2}+\frac{h^{2}}{3}+h^{2} \\
200^{2} & =\frac{13 h^{2}}{3} \text { as requive } \\
13 h^{2} & =120000 \\
h^{2} & =\frac{120000}{13} \\
h & \simeq 96.07689 .
\end{aligned}
$$

$$
h \simeq 96 \mathrm{~m} \text { (necrest metre) }
$$

Question 13
c) i) $\quad C=C_{0} e^{-4 t}$
$t=0 \quad c=7$ so $C_{0}=7$

$$
\begin{gathered}
c=7 e^{-k t} \\
t=1 \quad c=3 \cdot 2 \\
3 \cdot 2=7 e^{-k} \\
\frac{16}{35}=e^{-k} \\
-k=\log _{e} \frac{16}{35} \\
k=-\log _{e} \frac{16}{35} \text { or } k=\log _{e} \frac{35}{16}
\end{gathered}
$$

ii) $C=7 e^{\log _{e} \frac{16}{35} \times t}$

We want $C=0.2$

$$
\begin{aligned}
& 0 \cdot 2=7 e^{\log _{e} \frac{15}{35} \times t} \\
& \frac{1}{35}=e^{\log _{e} \frac{16}{35} \times t} \quad \quad \quad \quad \begin{array}{l}
\text { substitute } 4 \\
\text { male prog ness }
\end{array} \\
& \log _{e} \frac{1}{35}=\log _{e} \frac{16}{35} \times t \\
& t=\frac{\log _{e} 1 / 35}{\log _{e} 16 / 35} \\
& t \approx 4054207 \ldots \text {. Answer } 2018+4 \\
& \text { During the yew } 2022 \quad
\end{aligned}
$$

Question 14
a)

$$
\begin{aligned}
L H S & =\frac{(1-\sin \theta)(1+\sin \theta)}{\cos ^{2} \theta} \\
& =\frac{1-\sin ^{2} \theta}{\cos ^{2} \theta} \\
& =\frac{\cos ^{2} \theta}{\cos ^{2} \theta} \\
& =1 \\
& =\text { RHS as requined }
\end{aligned}
$$

b) i)

$r^{2}+(x-a)^{2}=a^{2} \quad$ (pythagoras' theorem)

$$
\begin{aligned}
x^{2}+x^{2}-2 a x+a^{2} & =a^{2} \\
r^{2} & =2 a x-x^{2} \text { as requived }
\end{aligned}
$$

ii)

$$
\begin{aligned}
A & =\pi r^{2} \\
& =\pi\left(2 a x-x^{2}\right) \\
V & =\frac{1}{3} \pi r^{2} h \\
& =\frac{1}{3} \pi\left(2 a x-x^{2}\right) x \\
& =\frac{1}{3} \pi\left(2 a x^{2}-x^{3}\right) \text { as nequine. }
\end{aligned}
$$

iii) $\frac{d V}{d x}=\frac{1}{3} \pi\left(4 a x-3 x^{2}\right)$

Solve $\frac{d V}{d x}=0$

$$
\begin{aligned}
& \frac{1}{3} \pi\left(4 a x-3 x^{2}\right)=0 \\
& 4 a x-3 x^{2}= 0 \\
& x(4 a-3 x)= \\
& x=0 \quad \text { or } 3 x=4 a \\
& x=\frac{4 a}{3}
\end{aligned}
$$

but $0<x<2 a$
So $x=\frac{4 a}{3}$ orly.
c)

 shape
\checkmark intercepts. (note x ins ane slightly off $x=1$ \& $x=3$)
d) i)

$$
\begin{aligned}
& O A^{2}+A C^{2} \\
= & O \cdot S^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2} \\
= & \frac{1}{4}+\frac{3}{4} \\
= & 1 \\
= & O C^{2}
\end{aligned}
$$

Sine pythagoras theorem hold, $\angle O A C$ is $\pi / 2$

$$
\text { i) } \begin{aligned}
\text { Area } & =2 \times \frac{1}{2} \times O A \times A C \\
& =O A \times A C \\
& =\frac{1}{2} \times \frac{\sqrt{3}}{2} \\
& =\frac{\sqrt{3}}{4} m^{2}
\end{aligned}
$$

iii) let $\angle O A C=\alpha$ and $\angle A C O=\theta$

$$
\begin{aligned}
\sin \alpha & =\frac{\frac{\sqrt{3}}{2}}{1} \\
\alpha & =\frac{\pi}{3} \quad \text { so } \theta=\frac{\pi}{6} \quad \text { Candle so } \\
\text { So } \angle A O B & =2 \alpha=\frac{2 \pi}{3} \text { and } \angle A C B=\frac{\pi}{3}
\end{aligned}
$$

$$
\alpha=\frac{\pi}{3} \quad \text { So } \theta=\frac{\pi}{6} \quad(\text { angle sum } \triangle A O C)
$$

Reflex $\angle A O B=\frac{4 \pi}{3}$ and reflex $\angle A C B=\frac{5 \pi}{3}$

Area Sector $A O B=\frac{\frac{1}{2}^{2} \theta}{2}$

$$
\begin{aligned}
& =\left(\frac{1}{2}\right)^{2} \times \frac{4 \pi}{3} \times \frac{1}{2} \\
& =\frac{1}{4} \times \frac{4 \pi}{3} \times \frac{1}{2} \\
& =\frac{\pi}{6}
\end{aligned}
$$

finding of leas tons. reflex angle and correct area al sector

$$
\text { Area sector } \begin{aligned}
A C B & =\left(\frac{\sqrt{3}}{2}\right)^{2} \times \frac{5 \pi}{3} \times \frac{1}{2} \\
& =\frac{3}{4} \times \frac{5 \pi}{3} \times \frac{1}{2} \\
& =\frac{5 \pi}{8}
\end{aligned}
$$

$$
\begin{aligned}
\text { Total Area } & =\frac{\pi}{6}+\frac{5 \pi}{8}+\frac{\sqrt{3}}{4} \\
& =\frac{4 \pi+15 \pi+6 \sqrt{3}}{24} \\
& =\frac{19 \pi+6 \sqrt{3}}{24}
\end{aligned}
$$

