Name: Maths Clas	S :
------------------	------------

SYDNEY TECHNICAL HIGH SCHOOL

YEAR 11 PRELIMINARY HSC COURSE

Mathematics

September 2008

TIME ALLOWED: 120 minutes

Instructions:

- Write your name and class at the top of this page, and on all your answer sheets.
- Hand in your answers attached to the rear of this question sheet.
- All necessary working must be shown. <u>Marks may not be awarded for careless or badly arranged work.</u>
- Marks indicated are a guide only and may be varied at the time of marking

(FOR MARKERS USE ONLY)

1	2	3	4	5	6	7	8	TOTAL
/14	/13	/13	/12	/13	/12	/12	/11	/100

QUESTION 1: (14 Marks)

(a)	Fully factorise	$5x^2 - 45$	2

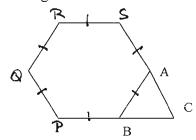
Marks

(b) Rationalise the denominator and simplify:
$$\frac{\sqrt{5}}{\sqrt{5}-1}$$

(c) Simplify
$$7\sqrt{3} - 2\sqrt{27}$$

(d) Expand and simplify
$$(x-2)(x^2+2x+4)$$

(e) The diagram below is of a regular hexagon with a triangle ABC attached made by extending two of its sides.



- (i) Find the size of each of the internal angles of the hexagon 1
- (ii) Giving all reasons, identify the type of triangle ABC drawn 3
- (f) Find the equation of the line through the point (3, -4) and parallel to the line x + 2y 2 = 0. Give your answer in general form.

QUESTION 2: (13 Marks)

Marks

(a) Find
$$\lim_{x \to \infty} \frac{3x^2 - 2x + 3}{2x^2 - 5}$$

1

(b) If
$$\cos \theta = \frac{5}{7}$$
 and $0^{\circ} \le \theta \le 90^{\circ}$ find $\tan \theta$ as a surd in simplified terms

2

(c) Differentiate the following with respect to x:

(i)
$$y = (4+x)(2-x)$$

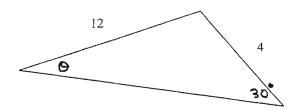
1

(ii)
$$y = \frac{3}{x^2}$$

1

(iii)
$$y = (5x^2 - 4)^4$$

1



(i) Find the value of θ to the nearest minute

3

(ii) $\theta = 170^{\circ}24'$ is also a solution to the problem above. Explain why this "solution" is not an answer to the question.

1

(e) Solve $|2x-3| \le 5$ and plot the solution on a number line

QUESTION 3: (13 Marks):

			Marks
(a)		Find the point(s) on the line $y = x^3 - 12x + 1$ where the tangent is parallel to the x-axis	3
(b)		The functions $f(x)$ and $g(x)$ are defined as:	
		$f(x) = 1 - x^2$ and $g(x) = \sqrt{x}$	
	(i)	On a set of neat axes, sketch $y = f(x)$ showing all intercepts with the co-ordinate axes.	2
	(ii)	Find $f(-3)$	1
	(iii)	Find the Range of $f(x)$	1
	(iv)	What is the natural domain for $g(x)$?	1
	(v)	Find $f(g(x))$	1
(c)		Differentiate the following with respect to x: (give your answers without negative indices)	
		(i) $y = \frac{2 - x^2}{x^2 + 2}$	2
		$(ii) y = \sqrt{1 - x^2}$	2

QUESTION 4: (12 Marks)

Marks

(a) Given that α and β are the roots to $2x^2 - 3x + 2 = 0$, find the value of the following:

(DO NOT ATTEMPT TO SOLVE THE EQUATION)

(i)
$$\alpha + \beta$$

(ii)
$$\alpha\beta$$

(iii)
$$\alpha^2 + \beta^2$$

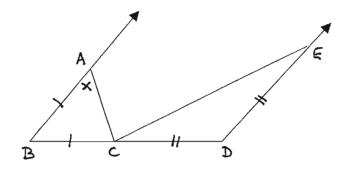
(iv)
$$\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$$

(b) In the diagram at right,

$$AB = BC$$
 and $CD = DE$

B, C and D are collinear

$$\angle BAC = x$$



Give reasons for all of your answers to the questions below

- (i) Find $\angle ACB$ in terms of x
- (ii) Find $\angle ABC$ in terms of x
- (iii) Why is $\angle CDE = 2x$?
- (iv) Hence find an expression for ∠DCE 2
- (v) What can you conclude about the size of $\angle ACE$?

QUESTION 5: (13 Marks)

(d)

has no real roots.

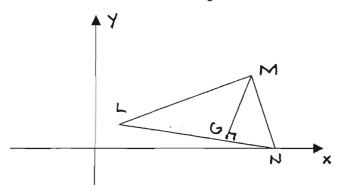
			Marks
(a)	Find the ϵ where $x = 0$	equation of the tangent to the curve $y = x^3 - 2x + 1$ at the point = 2	3
(b)	-	P (2, 2) lies on the curve $y = 2x - x^2 + 2$ equation of the normal to this curve at P	3
(c)	(i) (ii)	Sketch $y = 2x - 1 $ showing all intercepts Draw another line on your sketch which could be used to solve $ 2x - 1 = 3$ and label it.	2
		THERE IS NO NEED TO SOLVE THE INEQUALITY	

Find the values of k for which the equation $4x^2 - 4(k-3)x + 1 = 0$

QUESTION 6: (12 Marks)

Marks

(a) The points L (1, 1), M (4, 2), and N (5, 0) shown below form a triangle. MG is an altitude of this triangle.



(i) Find the length of LN

1

(ii) Find the equation of LN

2

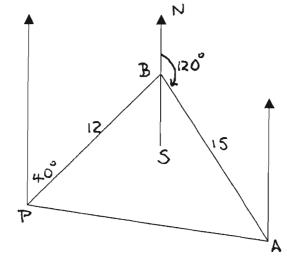
(iii) Find the height MG

2

(iv) Find the area of \triangle LMN

2

(b) The diagram below shows the course of a ship, which sails from a port P on a bearing of 040° for 12 km before changing course to a bearing of 120° and travelling a further 15 km to a destination A.



(i) Explain why $\angle PBA = 100^{\circ}$

1

(ii) Find the distance of A from P to the nearest km

2

(iii) Find the bearing of P from A to the nearest degree.

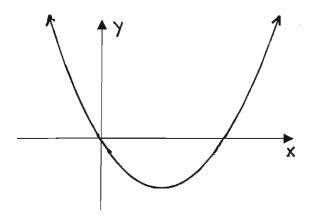
QUESTION 7: (12 Marks)

Marks

(a) Solve
$$5^{1-2x} = 25$$

1

- (b) The point (k, 1) is equidistant from the points A(2, 3) and B(-1, 4). Find the value of k.
- (c) Solve $2\cos^2 x 1 = 0$ for $0^0 \le x \le 360^0$
- (d) The diagram below represents $y = kx^2 4kx$



(i) Find the intercepts with the x-axis

1

(ii) Find the co-ordinates of the vertex in terms of k

2

(iii) What does the result to part (ii) above imply about the number of roots to the equation $kx^2 - 4kx + A$ when A > 4k?

QUESTION 8: (11 Marks)

Marks

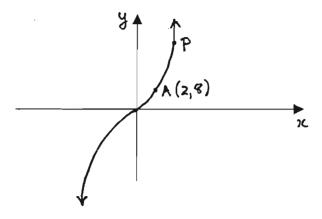
1

1

(a) On a set axes draw the graph of
$$(x-1)^2 + (y+2)^2 = 9$$
 and on it shade the region satisfying $(x-1)^2 + (y+2)^2 \le 9$

(b) Show that
$$\frac{(1-\cos\theta)(1+\cos\theta)}{\sin\theta\cos\theta} = \tan\theta$$

(c) The curve given below is $y = x^3$. The point A on it is (2, 8).



(i) The point P has an x value of 2 + h. Give the y co-ordinate of point P.

(You may use the formula
$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$
)

(ii) Showing all working, prove that the slope of the chord PA is given by 3

$$12 + 6h + h^2$$

- (iii) Find the limit of the slope of chord PA as P approaches A along the curve (ie as $h \rightarrow 0$)
- (iv) Give an interpretation of the answer you obtained in part (iii) above

END OF EXAMINATION PAPER

Teacher's Name: Student's	Name/N°:
(1) (a) $5(x+3)(x-3)$ (b)	1 ⁽²⁾ (a) ³ / ₂
(b) \(\sigma \sigma \left(\sigma \sigma \right) \) \(\frac{1}{4} \sigma \cdot \D \)	(b) 1/24. Z
(c) 7/3-6/3 = 13 < 0	5 ta 0 2 5 eigher 25 (1)
(9) $\chi^3 - 8$	(a) (i) -2-2x
(e) (i) Angle sum = 720° Each angle is 120° (D	$(ii) - 6/x^3$ ob $-6x^{-3}$
(ii) Since, SAC = 180°] [BAC = 60° (1)	(ii) 40x (5x²-4)
Similar, [ABC = 60° angle sin of)	$(4)(1) \frac{500}{4} = \frac{500}{12}$
.: > ABC is equilateral ()	$5^{1} \cdot 6 = \frac{3}{12} \boxed{0}$ $0 = 9^{\circ} 36^{\circ} \boxed{0}$
(f) EITHER: 51000 = -1/2. (1)	(subtreet 1 if not to necrest minute) (ii) The angle sum of the triangle
$\frac{1}{2} + \frac{1}{3} = -\frac{1}{2} (x - 3)$ $\frac{1}{2} + \frac{1}{3} = -x + 3$	nond excited 180°
(x+2y+5=0 (2) (s) btreet) mank if not in	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
general form] off x + 2y + k = 0 ①	2) -1 = x = 4 -1 0
x + 2y + R = 0 U substitute (3,-4) 3 - 8 + k = 0	O_{1}^{0} $2x-3:5$ 80 $2x-3=-5$
k=5 (1) x + 2y +5 = 0 (1)	
	If they use this method they must write -1 < x < 4 to get the extremen

(a) $dy_{1} = 3x^{2} - 12$

To be parallel with x-and

do = 0 = () (ifyou see

Pts are (2,-15) og (-2,17)

(b) (i) (1) for shope 1 for all interests

(ii) f(-3) = -8(iii) Range y 5 1.

(N) x>0 (no mark if the

(c) $\frac{dy}{dx} = \frac{(x^2+2)(-2x)-(2-x^2)(2x)}{(x^2+2)^2}$ (d) (v) It is 90° $= -8h / (h+2)^{2} = 0$

(ii) $\frac{dy}{dx} = \frac{1}{2}(1-x^2)^{-2}(-2x)$

= - 2

(a) (i) d+ B= 3/2

(ii) $\alpha\beta = 1$ (iii) $\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha\beta$ (i)

(in) & + B = 2 + B = 2B + B

(b) (i) LACB = x. (box costs of

(ii) LABC = 180-2x (chase sum of)

(iii) Because it is co-interior to IABC and they must sum to 180°

(i) | DCE + DEC = 180-2x

$$(5)(a) y = x^3 - 2x + 1$$

$$dy = 3x^2 - 2$$

$$\frac{A}{m_T} = 10 \quad ()$$

$$y = 5$$
 ()
 $y - 5 = 10(x - 2)$
 $y - 5 = 10x - 20$
 $y = 10x - 15$ (1)

$$y - 2 = \frac{1}{2}(x - 2)$$

 $2y - 4 = x - 2$
 $x - 2y + 2 = 0$ (1)

(c)
$$y = |2e-1|$$
 $|ABS| = 60^{\circ}$
(i) $y = 3 \leftarrow (1)$ $|PBA| = |000^{\circ}|$

$$k^{2}-6k+9-1=0$$

$$k^{2}-6k+8=0$$

$$(k-4)(k-2)=0$$

$$k = 4$$
 on $k = 2$ (2)

(a)(i)
$$LN = \sqrt{4^2 + 1^2}$$

= $\sqrt{17}$. (1)

(ii)
$$M_{1x} = -\frac{1}{4}$$
 (i) $y = +2 -\frac{1}{4}(x-1)$

$$(ii)$$
 $p = \left| \frac{4+8-5}{1} \right|$

(iii)
$$91.0 = 51.00$$

 $12 = 20.77$
 $0 = 34^{\circ}41'$
 $0 = 35^{\circ}$

