Class Teacher	•	Name

SYDNEY TECHNICAL HIGH SCHOOL

Mathematics Extension 1 Year 11 Preliminary Course Assessment Task 3 September 2014

Time Allowed:

90 minutes

General Instructions:

- Write using black or blue pen.
- Approved calculators may be used.
- Attempt all questions.
- All necessary working must be shown. Marks may not be awarded for careless or badly arranged work.
- Marks indicated are a guide only and may be varied if necessary.
- Start each question on a new side of a page.

Total Marks 71

Section 1 – Multiple Choice	Section 2
5 Marks	66 Marks
Answer on sheet after question 5. Do not	Allow 82 minutes for this section
tear this sheet out.	
Allow 8 minutes for this section	

<u>SECTION 1 – MULTIPLE CHOICE (FILL IN YOUR ANSWERS ON THE ANSWER SHEET PROVIDED-DO NOT TEAR THE SHEET OUT)</u>

1. A parabola has its focus at (0, 4). The equation of its directrix is x = -4.

Which of the following is the equation of the parabola?

- A. $x^2 = 16y$
- B. $(x+2)^2 = 8(y-4)$
- C. $(y+2)^2 = 8(x-4)$
- D. $(y-4)^2 = 8(x+2)$
- 2. Which one of the following expressions represents the factored form of $8x^3 + 27$?
 - A. $8x^3 + 27 = (2x + 3)(4x^2 + 6x + 9)$
 - B. $8x^3 + 27 = (2x + 3)(4x^2 6x + 9)$
 - C. $8x^3 + 27 = (2x 3)(4x^2 6x 9)$
 - D. $8x^3 + 27 = (2x 3)(4x^2 + 6x 9)$
- 3. Consider the function $f(x) = \frac{x^4 + 3x^2}{x^4 + 3}$

Which one of the following statements is correct?

- A. f(x) is odd and $\frac{\lim}{x \to \infty} f(x) = 1$
- B. f(x) is even and $\frac{\lim}{x \to \infty} f(x) = 3$
- C. f(x) is even and $\frac{\lim}{x \to \infty} f(x) = 1$
- D. f(x) is odd and $\frac{\lim}{x \to \infty} f(x) = 3$

4. Part of the graph of y = P(x), where P(x) is a polynomial of degree four, is shown below.

Which of the following could be the polynomial P(x)?

- A. $P(x) = x^2(x+2)^2$
- B. $P(x) = (x+2)^4$
- C. $P(x) = x(x-2)^3$
- D. $P(x) = (x-1)^2(x-2)^2$

5. The normal to the graph of $y = \sqrt{b - x^2}$ has a gradient of 3 when x = 1.

The value of b is

- A. $-\frac{10}{9}$
- B. $\frac{10}{9}$
- C. 4
- D. 10

Name: _	,
Teacher:	

SECTION A: MULTIPLE CHOICE

Instructions:

- Circle the letter that best answers the question
- One mark each

1. Α В C D 2. Α В С D 3,. С Α В D С 4. Α В a D 5. С Α В D

SECTION 2

QUESTION 6 (start a new page) Marks Solve $\frac{2x+1}{x-1} > 3$ (a) 2 (i) Sketch $y = x^2 - 1$ (b) 1 (ii) Hence, on a separate diagram sketch $y = |x^2 - 1|$ 1 P(x) is an odd monic polynomial of degree 3. (c) 2 If P(3)=0, sketch the polynomial. Differentiate $y = \frac{x+1}{\sqrt{x}}$ and express the derivative as a simplified fraction. (d) 2 Use the substitution $t = tan \frac{x}{2}$ to show that (e) 3 $\frac{1+\sin x}{1-\cos x} = \cot \frac{x}{2} + \frac{1}{2} \csc^2 \frac{x}{2}$

(a) The equation $2x^2 + px + q = 0$ has one root three times the other. Show that $3p^2 = 32q$.

2

(b) For what values of k is $2x^2 - 5x + 4k$ positive definite?

2

- (c) A parabola has equation $y^2 + 8y = -12x + 8$
 - (i) Find the coordinates of its vertex.

1

(ii) Sketch the parabola showing its x intercept.

1 .--

(iii) On your sketch, display the focus and directrix.

- 2
- (d) Find the acute angle between the lines $x \sqrt{3}y 2 = 0$ and $\sqrt{3}x y + 3 = 0$
- 3

QUESTION 8 (Start a new page)

Marks

(a) Show that the equation $x^2 + (k+2)x + k = 0$ has two real roots for all real values of k.

2

(b) Solve the equation

3

cos2x + 3cosx + 2 = 0 for $0^{\circ} \le x \le 360^{\circ}$

(c) (i) Show that (x + 1) is a factor of $P(x) = x^3 - x^2 - 10x - 8$.

1

(ii) Hence express $P(x) = x^3 - x^2 - 10x - 8$ as a product of three linear factors

1

(iii) By sketching P(x) or otherwise, solve the inequality

2

$$\frac{x^3-10x}{x^2+8} \ge 1$$

(d) Find the domain and range of the function $f(x) = 3\sqrt{4-x^2}$

2

2

- $\frac{1}{p^2 pq} \frac{1}{pq q^2}$ (a) Simplify
 - 2
- The polynomial $P(x) = x^3 + a^2x^2 + ax + b$ leaves a remainder of 2 when divided by x(b) and a remainder of 13 when divided by x + 1.
 - (i) Show that b = 21
 - (ii) Find the value of α 2
 - Express sinx + 3cosx in the form $R sin(x + \alpha)$ where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$, (c) giving the value of $\it R$ in simplest exact form, and the value of $\it lpha$ correct to the nearest degree.
 - (ii) Solve the equation $3\cos x + \sin x + 2 = 0$ for $0^{\circ} \le x \le 360^{\circ}$, 2 giving the solutions correct to the nearest degree.
 - (d) Find the coordinates of point P on the curve $y = x\sqrt{x+3}$ where the tangent is parallel to the x - axis.

2

(a)

A $(cos\theta, sin\theta)$ and B $(cos\theta, -sin\theta)$, $0^{\circ} < \theta < 90^{\circ}$, are 2 points on the circle with centre at the origin and radius 1. Use the cosine rule in \triangle AOB to show that $\cos 2\theta = 1 - 2sin^2\theta$.

- (b) A $(8,\sqrt{50})$ and B $(1,\sqrt{18})$ are divided externally by a point P in the ratio of 3:1. 3 Find the simplest exact form of this point.
- (c) Show that $\tan 75^\circ = 2 + \sqrt{3}$

2

(d)

CD is a vertical flagpole of height 10 metres. It stands with its base on horizontal ground. A and B are points on the ground due South and due East of C respectively. The angle of elevation of D is 45° from A and 30° from B. E is the foot of the perpendicular from C to AB.

(i) Show that ∠ABC=30°

2

2

(ii) Find the angle of elevation of D from E correct to the nearest minute.

2

3

- (a) P(x,y) is a variable point which moves in the number plane so that its distance from 2 the point A(3,3) is twice its distance from the origin. Find the equation of the locus of P.
- (b) The polynomial $P(x) = x^3 + 2x^2 4x 1$ has zeros α , β and γ so that $P(x) = (x \alpha)(x \beta)(x \gamma)$.
 - (i) Find the value of $(1 \alpha)(1 \beta)(1 \gamma)$
 - (ii) Find the value of $(\beta + \gamma)(\gamma + \alpha)(\alpha + \beta)$
- (c) Show that the equation of the normal at the point $P(2ap, ap^2)$ on the parabola $x^2 = 4ay$ is $x + py = 2ap + ap^3$.

 $P(2at,at^2)$ and $Q(\frac{-2a}{t},\frac{a}{t^2})$ are two points on the parabola $x^2=4ay$. M is the midpoint of the chord PQ.

As P and Q move on the parabola, find the locus of M.

END OF PAPER

.

Teacher Name:

75-13 ş. = 13 2 - 32 8+x21-=11x+8 0 () = 329 1+212 =-12(x-2) ر اا 13×+3 13

DX +9 1

Student Name: (AACD isosceles) 912 + 512 2 ABC = 30° 3x 518 + 130 +an < ABC = 1013 -412 77 tan 30 = 10 . . . ij 4 1 -- Tay 45+a,30 -25in 3 = +an 45 + +an 30 Teacher Name: tan 75 = tan (45+30) 4+213 2 + 13 -22 212 -3x(+1x8 ى 4 Cos 20 = ΙĮ / !ev Cos 20 Ц K O.

) y 1; 100 Student Name: 1 0 = (a+3)(a-4) x=248°46' 147014 (ii) 13 = - (+a2 -a + 2 x2+8x+12=0 Fargent parallel to a axis > 3x2+24x+36=(ij 0 = 02-0-19 cii) 110 sin(x+72 (3c+2)(3c+6)W.P(0)=2= -2-2 **√** sin (x +72) x +72' = x = 249° Teacher Name: $(x+3)^{\frac{1}{2}} + x x^{\frac{1}{2}}(x+3)$ + 92) 6-0 2 2+3 1/20= 12+3 + 212+3 1x2+24x +36=x n2-200 cci) R= 1/2+32 = 110 $x(x+3)^{\frac{1}{2}}$ = 71034 110 Sin (x+72) = (42+3) 2/243 21213 13(+3 + 4(x+3)2 = x 1) (~ ij 8+3 - x+3 11 ر پی

	0 -
	is D = a cadjent of
	$\frac{1}{2a} = \frac{2a}{x^2 + 0} = \frac{2a}{x^2 + 0}$
	$\frac{dt}{dt} = \frac{2x}{4a}$
	×
	-
ł	+ 2(-2)
	$= \rho(-2)$
	= (-2 - 1)(-2 - 1)(-2 - 1)(-2 - 1)
)(x+g)
	(1-1)(1-1)(1-1) = (1-1)(1-1)(1-1)
	$0 = x^{2} + 2x + y^{2} + 2y^{2} - 6$
	$3x^2 + 6x + 3y^2$
	17-~
	11. a) \((x-3)^2+(y-3)^2 = 2\) \(\mu^2+y^2\)
	Control of the contro
	-: 0 = 49°61
	h
<u> </u>	tan 0 = 513
	<i>\$</i>
	2 = CE 10
	(ii) SIN 30 = CE

a) M is $\frac{2a+-\frac{2a}{4}}{3}$ $\frac{a+2+\frac{4a}{4}}{3}$ $x = a+-\frac{a}{4}$ $x = a+-\frac{a}{4}$ $x^2 = a+\frac{4a}{4}$ $x^2 = a+\frac{2a}{4}$ $x^2 = a+\frac{2a}{4}$ $x^3 = 2a+\frac{2a}{4}$ $x^4 = 2a+\frac{2a}{4}$ $x^4 = 2a+\frac{2a}{4}$ $x^5 = 2$

____ Teacher Name: ____

Student Name: