\qquad

Maths Class:

Year 11

Mathematics

 Preliminary Course Final Exam
September 2017

Time allowed: 120 minutes

General Instructions:

- Marks for each question are indicated on the question.
- Approved calculators may be used
- All necessary working should be shown
- Full marks may not be awarded for careless work or illegible writing
- Begin each question on a new page
- Write using black or blue pen
- All answers are to be in the writing booklet provided
- A reference sheet is provided at the rear of this Question Booklet, and may be removed at any time.

Section 1 Multiple Choice
Questions 1-8
8 Marks

Section II Questions 9-16
80 Marks

Total $=88$ marks

SECTION 1 (10 marks)

Choose the letter corresponding to the correct answer and fill in the Answer sheet provided at the front of your answer booklet.

DO NOT REMOVE THIS SHEET

1	Which of the following is NOT always a true statement? A. The diagonals of a rhombus bisect at right angles B. The opposite angles of a rhombus are equal C. The diagonals of a parallelogram bisect at right angles D. The opposite angles of a parallelogram are equal
2	The quadratic equation $2 x^{2}-4 x+5=0$ has: A. No real roots B. 1 real root C. 2 equal roots D. 2 distinct Real roots
3	Which statement below is true for the diagram shown? A. $\cos 60^{\circ}=\frac{5^{2}+4^{2}-x^{2}}{2 \times 5 \times 4}$ B. $\frac{4}{\sin 60^{\circ}}=\frac{x}{\sin 100^{\circ}}$ C. $x^{2}=25+16-2 \times 5 \times 4 \cos 60^{\circ}$ D. $\frac{5}{\sin 80^{\circ}}=\frac{x}{\sin 40^{\circ}}$
4	Find $\lim _{x \rightarrow \infty} \frac{3 x^{2}-2 x+3}{2 x^{2}-5}$

A. $-\frac{3}{5}$
B. $\frac{2}{3}$
C. $\frac{3}{2}$
D. 1

5	If $=\frac{2 \sqrt{3}+3}{\sqrt{3}-2}=x+y \sqrt{3}$, then A. $x=12$ and $y=7$ B. $x=-12$ and $y=7$ C. $x=12$ and $y=-7$ D. $x=-12$ and $y=-7$
6	If $y=\frac{1}{(5 x-1)^{2}}$ then $\frac{d y}{d x}=$ A. $\frac{-10}{(5 x-1)^{3}}$ B $\frac{-10}{(5 x-1)}$ C. $\frac{-2}{(5 x-1)^{3}}$ D. $\frac{-2}{(5 x-1)}$
7	If $\cos \theta=\frac{k}{5}$ for an acute angle θ, then $\tan \theta=$ A. $\frac{\sqrt{25-k^{2}}}{k}$ B. $\frac{\sqrt{25-k^{2}}}{5}$ c. $\frac{5}{\sqrt{25-k^{2}}}$ D. $\frac{k}{\sqrt{25-k^{2}}}$
8	If $5^{2 x-1}=\frac{1}{125}$ then $x=$ A. 13 B. -12 C. -2 D. -1

SECTION 2

Complete all answers in your answer booklet provided

QUESTION 9: (10 Marks)

(a) Expand and simplify: $(x+3)\left(x^{2}-3 x+9\right)$
(b) Solve the equation: $|3 x-4|=5$

What is the size of one of the exterior angles of a regular pentagon?
(d) (i) What are the Domain and Range of the function $f(x)=\sqrt{16-x^{2}}$?
(ii) Sketch $y=f(x)$
(e) Find the equation of the tangent to the curve $y=\frac{1}{4} x^{3}-4$ at the point $P(2,-3)$

QUESTION 10: (10 Marks) Start a new page

Marks

(a) Find the derivatives of:
(i) $y=x^{3}+3 x-1$
(ii) $\quad y=(3 x-5)^{4}$
(iii) $y=\frac{2}{x}$
(iv) $2 \sqrt{x}$

(c) In the diagram below, the line $A C$ is given as $3 x-2 y+6=0$

B has the same x-coordinate as C and the same y-coordinate as A
(i) Find the point B.
(ii) Find the equation of the line through B perpendicular to line $A C$

QUESTION 11: (10 marks) Start a new page

(a) For the function defined by:

$$
f(x)=\left\{\begin{array}{lr}
2 x, & x \geq 1 \\
2-2 x, & x<1
\end{array}\right.
$$

(i) Sketch $y=f(x)$

Copy the diagram into your answer booklet
Setting out a formal proof, prove that $\triangle C B A||\mid \triangle C D B$

QUESTION 12: (10 marks) Start a new page

(a) Find the equation of the normal to the curve $y=2 x^{3}-4 x^{2}$ at the point $(1,-2)$
(b) $\quad \alpha$ and β are the roots of the quadratic equation $2 x^{2}-3 x+5=0$ (DO NOT ATTEMPT TO FIND THESE ROOTS)

Find the value of:
(i) $\alpha+\beta$
(ii) $\quad \alpha \beta$
(iii) $\frac{1}{\alpha}+\frac{1}{\beta}$
(iv)

$$
\alpha^{2}+\beta^{2}
$$

(v) $\quad \frac{\alpha}{\beta}+\frac{\beta}{\alpha}$

QUESTION 13: (10 Marks) Start a new page

(a)

In the diagram above, find the value of θ, if $90^{\circ}<\theta<180^{\circ}$
(b) (i) On the same diagram shade the region corresponding to the simultaneous solution of:

$$
(x-3)^{2}+y^{2} \leq 4 \quad \text { and } \quad x+y \geq 3
$$

(ii) The point P lies somewhere in the shaded region described in part (i).
At what point in the region above is P furthest from the origin? Give the co-ordinates of this point.
(c) If the roots of the quadratic equation $k x^{2}+(k-1) x+(2 k+1)=0$ are such that one root is the reciprocal of the other, find the value of k.

QUESTION 14: (10 Marks) Start a new page

(a) For the figure below, O is the centre of the circle, $\angle B C O=40^{\circ}$ $\angle A B C=65^{\circ}$
$B O$ is produced to M.

(i) Find the size of $\angle A B M$
(ii) Find the size of $\angle A O M$

You must provide reasons for each line of your proofs.

(b) The point A is $(2,0)$ while B is $(6,3)$ and $D(4,5)$ as shown.

(i) Find the length of $A B \quad 1$
(ii) Find the equation of the line $A B$ in general form 2
(iii) Find the shortest distance of the point D from $A B$ (ie $C D$) 2
(iv) Find the area of $\triangle A B D \quad 1$

QUESTION 15: (10 Marks) Start a new page

(a) If $f(x)=3 x^{2}$, find $\frac{f(x+h)-f(x)}{h}$
(b) Prove that $\quad \frac{\tan ^{2} x}{\sec x+1}=\sec x-1$
(c) Solve $4 \sin ^{2} \theta-3=0$ for $0^{\circ} \leq \theta \leq 360^{\circ}$
(d) If $f(x)=x^{\frac{3}{2}}$ find the value of $f^{\prime}(4)$

QUESTION 16: (10 Marks) Start a new page

(a) Find $\frac{d y}{d x}$ if:
(i) $y=\sqrt{x^{3}+3}$
(ii) $y=\frac{x}{x+1}$
(b) The diagram below shows the course of a ship, which sails from a port P on a bearing of 040° for 12 km before changing course to a bearing of 120° and travelling a further 15 km to a destination A .

(i) Explain why $\angle \mathrm{PBA}=100^{\circ} \quad 1$
(ii) Find the distance of A from P to the nearest km . 2
(iii) Find the bearing of P from A to the nearest degree.

YEAR 11 PRELOMINART FMALCOARAS 2017
matumotics sourtans
Musphe CHOJCE
Q1. (C)
Q2.

$$
\begin{align*}
& \Delta=16-4(2)(5) \tag{D}\\
& <0 . \text { (A) } \tag{A}
\end{align*}
$$

$$
\begin{align*}
\frac{(2 \sqrt{3}+3)(\sqrt{3}+2)}{3-4} & =\frac{6+6+7 \sqrt{3}}{-1} \tag{c}\\
& =-12-7 \sqrt{3} \tag{D}
\end{align*}
$$

Q6.

$$
\begin{align*}
\frac{d}{d x}(5 x-1)^{-2} & =-2(5)(5 x-1)^{-3} \\
& =\frac{10}{(5 x-1)^{3}} \tag{A}
\end{align*}
$$

OT.

$$
\begin{equation*}
\therefore \tan \theta=\frac{\sqrt{25-k^{2}}}{k} \tag{A}
\end{equation*}
$$

Q8. $\quad 5^{2 x-1}=5^{-3}$

$$
\begin{align*}
\therefore \quad 2 x-1 & =-3 \\
2 x & =-2 \\
x & =-1 . \tag{D}
\end{align*}
$$

Queston 9:
(a) $x^{3}+27$
(b)

$$
\begin{array}{llll}
3 x=9 & \text { of } & 3 x=-1 \\
x=3 & \text { or } & x=-1 / 3
\end{array}
$$

(c) $\operatorname{Sum}=360^{\circ} \quad \therefore$ Eech ange $36 \% / 5=72^{\circ}$
(d)
(i) $2=-4 \leq-5 y$
(e) $\frac{d y}{d x}=\frac{3}{4} x^{2}$

$$
\text { At }(2,-2) \quad m_{T}=3
$$

(ii)

Quespon 10:
(a) (i) $3 x^{2}+3$
(ii) $12(3 x-5)^{3}$
(iii) $-3 / x^{2}$
(iv) $x^{-1 / 2}$ or $1 / \sqrt{x}$.
(b) $\theta=60^{\circ}$
C.) (i) A i $(0,3) \quad \subset$ i $(-3,0) \therefore B \dot{B}(-2,3)$.
(ii) $m_{A C}=3 / 2$ if pesp $=-2 / 3$
\therefore Equanio

$$
\begin{aligned}
y-3 & =-2 / 3(x+2) \\
3 y-9 & =-2 x-4 \\
2 x+3 y-5 & =0
\end{aligned}
$$

Queston 11:

(ii)

$$
\begin{aligned}
& f(-1)+f(2)+f(3) \\
& =4+z+6 \\
& =12
\end{aligned}
$$

(b)

$$
\begin{align*}
& 8 x-2 y=38 \tag{1}\\
& x+2 y+2=0 \tag{2}\\
& 9 x+2=38 \\
& \therefore\left\{\begin{array}{l}
x
\end{array}\right)=3 \\
& y=3
\end{align*}
$$

(1) $+(2)$

In $\triangle C D B, \quad 2 x=80^{\circ}$ (castc

$$
\therefore x=40^{\circ}
$$

In $\triangle C B A$ an $A \triangle C D B$

$$
\begin{aligned}
& \angle A C B=\angle B C D(\text { sameade } \\
& \angle C B A=1 C D B=40^{\circ} .
\end{aligned}
$$

$$
\therefore \quad \triangle C B A\left\|\|^{*} \triangle C D B\right. \text { (equinglo }
$$

Question 12:
(a) $\frac{d y}{d x}=6 x^{2}-8 x$
at $(1,-2) \quad m_{x}=-2$
$M N=1 / 2$
SQuaton:

$$
\begin{aligned}
y \text { OnO : } & =1 / 2(x-1) \\
2 y+4 & =x-1 \\
2 y & =x-5
\end{aligned}
$$

(b)

$$
\text { (i) } \alpha+\beta=3 / 2
$$

(ii) $\alpha \beta=5 / 2$
(iii) $\frac{1}{\alpha}+\frac{1}{\beta}=\frac{\alpha+\beta}{\alpha-\beta}$
(iv) $\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta$

$$
=3 / 2 / 5 / 2
$$

$=9 / 4-5$

$$
=3 / 5
$$

$=-11 / 4$
(v)

$$
\begin{aligned}
\frac{\alpha}{\beta+\beta} \alpha & =\frac{\alpha^{2}+\beta^{2}}{\alpha \beta} \\
& =-11 / 4 / \beta / 2 \\
& =-1 / 10
\end{aligned}
$$

QuEST0त13:
(a) By sinc rube,

$$
\begin{aligned}
\sin \theta-\sqrt{12} & =\frac{\sin -45}{\sqrt{8}} \\
\therefore-\operatorname{stn} \theta & =\frac{1 / \sqrt{2} \cdot \sqrt{12}}{\sqrt{8}} \\
& =\sqrt{3} / 2
\end{aligned}
$$

(b) (i)

$$
\therefore \theta=60^{\circ}
$$

(ii) $P \hat{n}(5,0)$
(c) Let tb roost, be α ond $1 / \alpha$

$$
\begin{aligned}
\text { PRODUCT } & =1=2 k+1 / k \\
\therefore & k=-1
\end{aligned}
$$

Quespan 14:
(a)

(i) In $\triangle B O C$, $O B$ ad $O C$ as
radii.

$$
\begin{aligned}
& \therefore \quad\left[\mathrm{KBm}=25^{\circ}\right. \text { (arste-4.m) }
\end{aligned}
$$

(iii) \triangle AOB-in lioscels (aval (adi

$$
\begin{aligned}
& \therefore B B A O=25^{\circ} \text { (base ing } \begin{array}{l}
\text { b } \\
\text { arequ }
\end{array} \\
& \therefore \theta=50^{\circ}\left(\text { exthorcruse }{ }^{4}\right.
\end{aligned}
$$

(b)
(i) $A B=\sqrt{(b-2)^{2}+3^{2}}$

$$
=5
$$

(ii) $M_{\text {FB }}=3 / 4 \quad$ FQuens $A B: y=3 / 4(x-2)$

$$
4 y=3 x-6
$$

ie $3 x-4 y-6=0$
(iii) $\quad p=\left|\frac{3(4)-4(5)-6}{5}\right|$
(is)

$$
\begin{aligned}
&=14 / 5 \\
& \text { Area }(A B D)=\frac{1}{2}(A B)(C D) \\
&=\frac{1}{2} \times 1 / 5 \times 5 \\
&=-7-1005 .
\end{aligned}
$$

Quespon IS:

$$
\text { f(a) f(x+h)-f(x)}=\frac{3(x+h)^{2}-3 x^{2}}{h}{ }^{h}=\frac{6 x+3 h^{2}}{h}
$$

(b) $\frac{\tan ^{2} x(\sec x-1)}{\sec ^{2} x-1}=\frac{\tan ^{2} x-(\operatorname{tec} x-1)}{\tan ^{2} x}$
(E)

$$
\begin{aligned}
& \sin \theta=\frac{\sqrt{3}}{2} \\
& \therefore \theta=60^{\circ}, 120^{\circ}, 240^{\circ}, 300^{\circ}
\end{aligned}
$$

(d) $f^{\prime}(x)=3 / 2 x^{1 / 2} \Rightarrow f^{\prime}(4)=3 / 2(2)$

Questan 16:

$$
\begin{aligned}
(\text { ar }) \text { (i) } \quad d y / x & =1 / 2\left(x^{3}+3\right)^{-1 / 4} \cdot 3 x^{2} \\
& =\frac{3 x^{2}}{2 \sqrt{x^{3}+3}}
\end{aligned}
$$

(ii) $\quad d y / d x=\frac{(x+1) \cdot 1-x \cdot 1}{(x+1)^{2}}$

$$
=1 /(x+1)^{2}
$$

(b) (i) LPBS $=40^{\circ}$ (alterach engho $N P \| Q S$)
and $\angle S B A=60^{\circ}$ (straisht $\angle Q B S$)

$$
\therefore \angle P B A=100^{\circ}
$$

(ii) $\ln \triangle P B A$,

$$
\begin{aligned}
& P A^{2}=12^{2}+15^{2}-2 \times 12 \times 15000100^{\circ} \\
& P A=21 k m
\end{aligned}
$$

(iii) \quad LBAM $=60^{\circ}($ arnters onges $)$

Let $\mid B A P=\theta$

$$
\begin{aligned}
\sin \theta / 12 & =\sin 110^{\circ} / 21 \\
\therefore \quad \theta & =34.24^{\circ}
\end{aligned}
$$

$$
\therefore \quad P_{A M}=9_{4.24^{\circ}}
$$

\therefore Beaing is $\left(\frac{360-94.24}{0}\right)^{\circ}$

$$
\begin{aligned}
& =265^{\circ}+76 \\
& =266^{\circ}
\end{aligned}
$$

EXAMINERS' COMMENTS - YEAR 11 ASSESSMENT 3
 MATHEMATICS 2017

QUESTION 9:

d) (i) The Domain was between -4 and 4 , not just $x \leq 4$. In most cases, to do the range you really have to know what the graph looks like, and the half-circle gives y as between 0 and 4 , not just $y \geq 0$.

QUESTION 10:

a) Make sure you use the correct notation when differentiating and for each step of working. Students need to be aware of setting out - E.g. $y=x^{2} \neq 2 x$
For parts (iii) and (iv), those who did not change the original equations to a negative/fractional index first had less success differentiating.
c) (ii) Some students used the incorrect gradient. Needed to find the gradient perpendicular to line AC. Some found the perpendicular distance and lost 3 marks - Read the question!

QUESTION 11:

c) If the question asks you to copy the diagram, please do so. Then
a. A formal proof requires you to start with "In $\triangle \mathrm{CDB}$ and" not just waffle on.
b. The only similarity proof involving sides is that two sides are in ratio, about a common angle. SAS is NOT a similarity proof. AA is NOT a reason for similarity. We would accept AAA, but better to say "equiangular"
c. For similarity, you only need to prove 2 angles are the same (by angle sum, the third HAS to be the same)
d. In this example, x had to be found before progressing.
e. Many people used $\triangle \mathrm{CDB}$ and $\triangle \mathrm{CAB}$ (ok), and then quoted angle ABD which is in neither triangle.

QUESTION 12:

This question was generally well done by all candidates.

QUESTION 13:

a) You need to mention why $\Theta=60$ is not an answer. The question is worth 3 marks!
b) ii) Find the point furthest from the origin $(0,0)$ not the centre of the circle.
c) k is not the root! Since the roots are reciprocal to each other, start with \propto and $\frac{1}{\alpha}$ then use product of the roots formula.

QUESTION 14:

a) Students need to give a correct reason for geometry (e.g. the triangle was isosceles as the radii were equal resulting in equal sides)
b) General form is $a x+b y+c=0$

QUESTION 15:

a) answer the given question - asked to find an expression not a limit, or a substitution of $\mathrm{x}=0$ or $\mathrm{x}=\mathrm{h}$
b) convoluted methods used, subject to silly mistakes
c) forgot the plus/minus sign when solving the equations

QUESTION 16:

a) (ii) Use the quotient rule when you have a quotient! Do not use the product rule as this is often messy and does not give the simplest form.
b) (i) "Explain" means "set out with reasons"
(iii) Use $\mathrm{AP}=21$ (from (ii)). You do not need to use more accurate (exact) value for AP since it was found in part (ii)

