

Name:		 	
Maths	Class:	 	

Year 11 MATHEMATICS

PRELIMINARY EXAMINATION ASSESSMENT 3

SEPTEMBER, 2018

Time allowed: 120 minutes

General Instructions:

- Write using black or blue pen
- In Questions 11–18, show relevant mathematical reasoning and/ or calculations
- Approved calculators may be used
- Full marks may not be awarded for careless work or illegible writing
- Begin each question on a new page
- All answers are to be in the writing booklet provided
- A reference sheet is provided at the back of this paper

Total Marks 74

Section 1 Multiple Choice Questions 1-10

10 Marks

Section II Questions 11-18

64 Marks

Section 1

Multiple Choice (10 marks)

Use the multiple choice answer sheet for Question 1-10

- 1. What is the value of $\frac{18.81 3.47}{2.79 + 7.75}$ correct to 2 significant figures?
 - (A) 1.4
 - (B) 1.45
 - (C) 1.46
 - (D) 1.5
- 2. What is $\frac{2}{3-\sqrt{2}}$ as a fraction with a rational denominator?
 - (A) $6-2\sqrt{2}$
 - (B) $6 + 2\sqrt{2}$
 - (C) $\frac{6-2\sqrt{2}}{7}$
 - (D) $\frac{6+2\sqrt{2}}{7}$
- 3. Which pairs of inequalities define the shaded region?
 - (A) $\begin{cases} x+y \ge 4 \\ y \le 2^{-x} \end{cases}$
 - (B) $\begin{cases} x + y \le 4 \\ y \ge 2^{-x} \end{cases}$
 - (C) $\begin{cases} x + y \ge 4 \\ y \le 2^{-x} \end{cases}$
 - $(D) \qquad \begin{cases} x+y \le 4 \\ y \le 2^{-x} \end{cases}$

4. Which of the following is a correct expression involving θ in the triangle ABC?

(A) $15^2 = 16^2 + 20^2 \times 16 \times 20\cos\theta$

(D)
$$\frac{\sin \theta}{16} = \frac{\sin 52^{\circ}3^{\circ}}{15}$$

5. Which parabola has a vertex at (2,-1) and directrix y = 1?

(A)
$$(x-2)^2 = 4(y+1)$$

(B)
$$(x+2)^2 = 4(y-1)$$

(C)
$$(x-2)^2 = 8(y+1)$$

(D)
$$(x+1)^2 = 8(y-1)$$

6. What are the values of x and y?

(A)
$$x = 40^{\circ}$$
 $y = 60^{\circ}$

(B)
$$x = 40^{\circ}$$
 $y = 80^{\circ}$

(C)
$$x = 80^{\circ}$$
 $y = 80^{\circ}$

(D)
$$x = 80^{\circ}$$
 $y = 80^{\circ}$

- 7. What is the value of f(-1) if $f(x) = x^3 4x$?
 - (A) f(-1) = -3
 - (B) f(-1) = -5
 - (C) f(-1) = 3
 - (D) f(-1) = 5
- 8. What is the equation of the circle shown in the diagram below?

(B)
$$(x-2)^2 + y^2 = 3$$

(C)
$$(x+2)^2 + y^2 = 9$$

9. What is the derivative of $(x^3 + 4)^3$?

(A)
$$3(x^3+4)^2$$

(B)
$$3(3x^2+4)^2$$

(C)
$$9x^2(x^3+4)^2$$

(D)
$$9x^2(3x^2+4)^2$$

- 10. For what value of k does the quadratic equation $x^2 + (k+2)x + 2k = 0$ have equal roots?
 - (A) -2
 - (B) 0
 - (C) 2
 - (D) 4

Section II

Total Marks (60) Attempt Questions 11 – 18.

Answer each question in your writing booklet. In Questions 11-18, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (8 Marks)

(a) Factorise
$$2x^2 + 7x - 4$$

(b) Solve
$$|x-4| = 1-2x$$

(c) Evaluate
$$\lim_{x \to 1} \frac{x^2 - 4x + 3}{x - 1}$$

(d) Sketch on
$$\frac{1}{3}$$
 of your page $f(x) = |x| - 4$ showing all main features (Hint use a ruler)

2

(a) Solve $2\cos x + 1 = 0 \text{ for } 0^{\circ} \le x \le 360^{\circ}$

2

(b) Simplify $\cot \theta - \cot \theta \cos^2 \theta$

2

(c) The quadratic equation $2x^2 - 5x - 3$ has roots α and β . Find:

i) $\alpha + \beta$

1

ii) αβ

1

iii) $\alpha^2 + \beta^2$

2

End of Question 12

In the diagram below the points A, B and C have coordinates (1,-2), (-4,-3) and (-1,3) respectively.

Not drawn to scale

a) Calculate the exact length of interval BC

2

b) Find the gradient of BC

1

c) Hence, show the equation of BC is y = 2x + 5

1

d) Find the perpendicular distance between A and the line BC

2

e) Find the co-ordinates of D, in the first quadrant so that ABCD is a parallelogram.

1

f) Find the exact area of the parallelogram ABCD

1

(a) In the diagram building B is 10km due east of building A. Building C is 7 km from building A and 4 km from building B.

i) Find the size of $\angle ABC$ correct to the nearest degree.

2

2

- ii) Hence find the bearing of building B from building C correct to the nearest degree.
- (b) For the function $f(x) = 3 + \sqrt{4 x^2}$ find the
 - i) the domain

1

ii) the range

1

(c) If $y = \frac{2x+3}{(x-1)^2}$ find $\frac{dy}{dx}$ in its simplest form.

2

(a) Find the equation of the line through the point of intersection of the lines 6x - 5y = 3 and 4x + y = -11 and also through through the point (2,1)

3

- (b) A right- angled triangle has sides of length x cm, (x + 1) cm and (x + 3) cm
 - i) Show that $x^2 4x 8 = 0$

2

ii) Hence find the length of the hypotenuse in simplest exact form.

1

(c) Find values for A and B if $3(x-2)^2 = A(x^2+4) + Bx$.

2

End of Question 15

(a) For what values of m is $-2x^2 + 3x + m$ negative definite.

1

(b) A rectangular hot water tank x metres wide, y metres high and 1.5 metres long,
 Which fits exactly into the roof of the house.
 The cross-section of the roof is an isosceles triangle with base 8 metres and equal sides 5 metres in length, as shown below.

i) Explain why the roof of the house is 3 metres high.

1

ii) Show that $y = \frac{3}{8}(8-x)$.

2

iii) Show that the volume of the tank is given by $V = \frac{9x}{16}(8-x)$

1

iv) Calculate the maximum volume of the tank. (without calculus)

3

End of Examination

© © ©

Student Name:			Teacher Name:
Mea	r II Mo	the	natics
Ass	essment	3	September 2018.
Multiple Chai	<u> </u>		
1. 0	6.	<u>B</u>	
D	1		
3 B	8		
4 C	9		
<u>5 B</u>		<u>C</u>	
Question 11			
a) $\partial x^2 + 7x - i$	t = (2x-	<u>ı)(∝</u>	+4)
b) x-4 =1-			
2-4=1		····	-x+4=1-2x
$3x = 5$ $x = \frac{5}{2}$			x = -3
<u> </u>	<u> </u>		
`			4.1
c) $\lim_{z \to 1} \frac{z^2}{z}$	<u>-4x + 3</u> 1	= .	$\lim_{2c-7} \frac{(\alpha-3)(\alpha-1)}{\alpha-1}$
			V 1
			lim oc-3 oc-71
		~	_2
			•
· · · · · · · · · · · · · · · · · · ·			

Student Name:	Teacher Name:
e ii) a B =	$\frac{c}{a} = \frac{3}{2}$
$(2+)^2$	$\beta^2 = (\alpha + \beta)^2 - 2\alpha \beta$
	· (5) ²) 2
	$= \left(\frac{5}{2}\right)^2 - \lambda \times \frac{3}{2}$
	= 37 or 9¢
	4
avestion 13	-
α) $\beta(-4,-3)$	c(-1,3)
d:	$= \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
ol	$= \sqrt{(-4-1)^2 + (-3-3)^2}$
d	$= \sqrt{(-3)^2 + (-6)^2}$
d	<i>=</i> √45
1 7	
b) m=-	$\frac{4^{2}-4^{2}}{x_{2}-x_{1}} = \frac{-3-3}{-4-1}$
	<u> </u>
	= 2
c) y-3=	=2(x+1)
y-3	= 2x + 2 = 2x + 5
- 9	- VV- , J

Student Name:	Teacher Name:
ick)	A(1,-2) $2x-y+5=0$
,	-
	$d = \frac{ ax_i + by_i + c }{\sqrt{a^2 + b^2}}$
	$\sqrt{a^2+b^2}$
	$d = \frac{ 2 \times 1 + (-1)(-2) + 5 }{\sqrt{2^2 + (-1)^2}}$
	$\sqrt{\mathcal{J}^2 + (-1)^2}$
	$d = 2+2+5 $ $\sqrt{5}$
	√ <u>5</u>
	d = 9 or 9\5 \sqrt{5}
	√5 5
<u>e)</u>	(4,4)
(f)	A-bxh
	= \46 x <u>9</u>
	V5
	$= \sqrt{9} \times \sqrt{5} \times \frac{9}{\sqrt{6}}$
	V.J
	= 27 units ²

Student Name:	Teacher Name:
<u>du</u>	$= \frac{2(x-1)\left[x-1-(\lambda x+3)\right]}{(x-1)^{\frac{1}{2}}}$
dy.	
	$\frac{2(2c-1)[2c-1-2c-3]}{2}$
	(sc-1) 4
	= $-2(z+4)$
	$(\alpha-1)^3$
Question	n IS
a) 6	0x - 5y - 3 + k(4x + y + 11) = 0
6	(2)-5(1)-3+4(4x2+1+11)=0
***************************************	12-5-3 + 20 K =0
	20 K = -4
	K =- I
	5
6	5x-5y-3-1(4x+y+11)=0
	3(6x-5y-3) -1 (4x+y+11) =0
	30x-25y-15-4x-y-11=0
	26x-26y-26 =0
	x-y-1=0
_b:i)	$x^2 + (3(+))^2 = (3(+3))^2$
	$x^2 + x^2 + 2x + 1 = x^2 + 6x + 9$
	$x^2 - 4x - 8 = 0$

Student Name: ____

Teacher Name:

		·	
bei)	$x^2 - 4x + 4 = 12$	20 > 0	-
	$(2(-2)^2 = 12$		-
	$(x-2) = -2\sqrt{3}$		-
	$x = 2\sqrt{3} + 2$	since x>0	-
	$x+3 = 5+2\sqrt{3}$		_

Hypotenuse has length (5+213)cm.

c)
$$3(x-2)^2 = A(x^2+4) + Bx$$

$$A=3$$
. $B=-12$

$$3(x^{2}-4x+4) = Ax^{2}+4A+6x$$

$$3x^{2}-12x+12 = Ax^{2}+4A+6x$$

$$3x^{2}=Ax^{2} - 12x = Bx$$

$$A = 3 \qquad B = -12.$$

		many and the property of the second
Student Name:	Teacher Name:	
avention 16		
a) <u>0<0</u>	$-2x^2+3x+m$	<u>, , , , , , , , , , , , , , , , , , , </u>
۵ < ٥	$\Delta = 3^2 - 4 \times -2 \times m$	
	= 9+8m <0	
	9 <-8m	
	m 4-9 8	
	8	
	•	
bi $h^2 = 5^2 - 4^2$		
$h^2 = 9$		
h = 3 m		***************************************
	······································	***************************************

$$\frac{4}{3} = \frac{4 - \frac{1}{2}x}{4}$$

$$y = \frac{3(8-2)}{6}$$

Student Name:	Teacher Name:
16 ciù)	V= 1.5 x x y
	$V = \frac{3}{2} \times \times \times \frac{3}{8} (8-\alpha)$
	$\sqrt{=9} \times (8-2)$
16 cèv)	Concave down parabola
	maximum at the vertex.
	Arre Decreases 1 9
	Axis of symmetry = $-b = -\frac{3}{2}$ $2x - \frac{3}{7}$
	76
	= 9 x 8 2 9
	2 9
	= 4
	ximum value
	$V = \frac{9}{2} \left(4\right) - \frac{9}{16} \left(4\right)^2$
,	= 9m ³
OR.	$max V = -\Lambda$
	$max V = -\Delta$ $4a$
	$=-(\frac{9}{2})^2-0$
44.	4x-9/16
	$-9m^3$