BAULKHAM HILLS HIGH SCHOOL MARKING COVER SHEET

YEAR 11 YEARLY Extension 1 2011

STUDENT NAME:

TEACHER NAME:

QUESTION	MARK
1	
2	
3	
4	
5	
6	
7	
TOTAL	/ 61

Section 1 - Answer Sheet				
a)				
b)				
c)	$\theta =$ $b =$ $b =$			
d)	Circle the correct answer			
	i) True / False			
	ii) True / False			
e)				
f)				
g)	r =			

BAULKHAM HILLS HIGH SCHOOL

2011 YEAR 11 YEARLY

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 90 minutes
- Write using black or blue pen
- Board-approved calculators may be used
- All necessary working should be shown in every question
- Marks may be deducted for careless or badly arranged work
- Attempt all questions

Total marks - 54

This paper consists of TWO sections.

Section 1 – Short Response 7 marks

Section 2 – Extended Response marks Attempt all questions Start a new page for each question

Section 1 – Short Response (7 marks) Attempt all questions. Show all necessary working

f)	Which diagram below is the correct graph of $ xy \ge 1$ (A) (B) (B) (C) (D)	1
g)	For what two values of $r \operatorname{does}^{18} \mathbf{P}_r = {}^{18} \mathbf{C}_r$ r = and $r =$	1
	End of Section 1	

Section II – Extended Response Attempt all questions. Show all necessary working. Start each question on a new page. Clearly indicate question number. Write your name and teacher's name at the top of each new page.

Que	estion 2 (9 marks) - Start a new page	Marks
a)	Solve $\frac{x}{x-3} \ge 2$	3
b)	Solve $\sin 2x - \sin x = 0$ for $0^\circ \le x \le 360^\circ$	3
c)	 <i>ABC</i> is a triangle inscribed in a circle. <i>PA</i> is a tangent to the circle and is produced to <i>R</i>. <i>PQ</i> is drawn parallel to <i>AB</i> and meets <i>BC</i> produced at <i>Q</i>. i) Copy the diagram onto your own paper ii) Prove <i>APQC</i> is a cyclic quadrilateral 	3

Question 3 (9 marks) - Start a new page			
a)	i)	On the same diagram sketch the graphs of $y = x - 2 $ and $y = \frac{3}{x}$	2
	11)	For what values of x is $ x - 2 < \frac{-x}{x}$?	2
b)	i)	Show that the acute angle between the lines $y = x + 2$ and $y = mx + b$ is given by $\tan \alpha = \left \frac{m-1}{m+1} \right $	1
	ii)	Write down a similar result for the angle β between the lines $y = 3x - 1$ and $y = mx + b$	1
	iii)	Hence find the gradients of the lines bisecting the angles between the lines $y = x + 2$ and $y = 3x - 1$	3

Que	estion 4 (9 marks) - Start a new page	Marks
a)	Prove $\frac{1+\sin\theta-\cos\theta}{1+\sin\theta+\cos\theta} = \tan\frac{\theta}{2}$	3
b)	Consider the curve $y = \frac{x}{x^2 + 1}$ i) Explain why there are no vertical asymptotes ii) Find $\lim_{x \to \infty} \frac{x}{x^2 + 1}$. iii) Find the stationary point/s and determine their nature iv) Sketch the curve showing the above information, given there are points of inflection when $x = \pm \frac{1}{\sqrt{3}}$.	1 1 3 1

Que	stion 5 (9 marks) - Start a new page		
a)	There are 8 green cards, 8 red card and 8 yellow cards in a pack. Four cards are chosen at random without replacement.		
	Find the probability that		
	i) 4 green cards are chosen	2	
	ii) At least 2 green cards are chosen	2	
b)	i) Prove that $\cot x + \tan x = 2 \operatorname{cosec} 2x$	2	
	ii) Hence prove that $\cot 15^\circ = 2 + \sqrt{3}$	3	

Que	stion 6	(9 marks) - Start a new page	Marks
a)	Conside	r the parabola $y = x^2$	
	i)	Find the equation of the tangent, <i>T</i> , to the parabola at the point $P(t, t^2)$	1
	ii)	Show that the line passing through the focus of the parabola and perpendicular to <i>T</i> has the equation $y = \frac{t-2x}{4t}$	3
	iii)	M is the foot of the perpendicular drawn from the focus to the tangent at T . Find the locus of M .	2
b)	A radius Show th	s of a circle divides a chord in the ratio 3 : 2 and is bisected by the chord. at $\cos A = \frac{\sqrt{2}}{4}$ where A is the acute angle between the radius and the chord.	3

End of Examination

YEAR II EXTENSION I YEARLY SOUTIONS 2011 a) 3! or 6 () cach graph $Q_{2a} \xrightarrow{k} \geq 2$ K\$3 6) $\mathcal{N}(\mathcal{N}-3) \geq 2(\mathcal{N}-3)^{\frac{1}{2}}$ \int 0 $(x-3)(x-2n+6) \ge 0$ $(x-3)(6-2) \ge 0$ c)0=180°, b=-1 d) i) False ii) True 32266 ii) that interaction 1-2= -> e) 20 Where 1-2 - T. 1-21-3=0 6) 2 sin n cos 2 - sin 2 20 1-4, 3=0 f) ß smin (2001x-1) =0 (x-3)(x1)=0 10= 4-4x/23 1 -8 n=-1,3 SINK=OV WIN= 4 とひ n= 0,110,360 L= 60,300 . L=] y= 1 is ploy intersection g) O and i no solula. · n= 0° 60° 180° 300, 360° : Solution is OKRES / 2 c) bi) W min MLS / ten a: | m.-mz IIm, m - () showing substitution W LAAR=X = <u>[m-1]</u> [+m+1] LACO = x (age believe a tangent and a chord at print of tond = [m-1] contract is equal to the angle in the alternate segret LQPA= & (corresponding L's, QPY/BA) V : LAPAC is anyclic good (extensi angle of a applic , $\frac{m-3}{3m+1}$ й) quadikted quali interior appointe () iii) andreads of lives breading is site when tand : tomp $\left|\frac{m-1}{m+1}\right| = \left|\frac{m-1}{2m+1}\right|$

 $\frac{m-1}{m+1} = \frac{1}{2} \frac{m-3}{m+1}$ $y = \frac{\mathcal{H}}{\mathcal{H}}$ 4 b in) (m-1)(3m+1) = (m+1)(m-3)(m-1)(3m+1) = -(m+1)(m-3)dy = (12"+1).1 - 12 (2.1) or 3m2-2m-1 = m2-2m-3 3m2-2m-1 = -m2 +2m+3 Lm 4m - 4m - 4 =0 = -2 $\frac{dy}{dy} = -x^2 + 1$ n--- 120 $m = 1 \pm \sqrt{1 - 4x |x - 1|}$ (271) no real solt Stat younts occur when the the =0 : m = 1355 are the gulents à 0= -n2+1 Q4. a) let t= tang, sin 0 = 2t wie = 1-t LUS= 1+ 1+ - 1-1 Texting 2 -2 -10 dy -> dr 25 가 0 0 1+26+1-1 = AP+26-1112 : head aid at $\frac{1}{2}$ levered more tp. (-1, -k) at (l, k)111-12+1-1-5 2t- +2t 2612 NB Function is cold then 12=0, y=0 6 MJ = 2E(141) ~ f=n - fay (11)I correct chape = RNS. Hsine - GIE - tan 2 with froning points HSME twose 六 labelled (NB not needed to include i) for verbuil asymptotes, denonvotor much equal 0, (-1-2) inflection. But xittico has no real sub since x'= - 1 v . No redial asymptotes ú) /im (2) +n 2→00 (2+1) +x 5 lin as lim 1 - 10 and lim 1- 10 2700 11: 0

$$\begin{array}{c} (05 \circ j \cdot i) \quad \left(f_{\text{fyrned}} \right) & - \frac{k_{\text{fyr}}}{m_{\text{fyr}}} & \left(j \not \in k_{\text{transfer}} \right) \quad \left(f_{\text{fyr}} \right) \\ & = \frac{k_{\text{fyr}}}{m_{\text{fyr}}} & \left(j \not \in k_{\text{transfer}} \right) \quad \left(f_{\text{fyr}} \right) \\ & = \frac{k_{\text{fyr}}}{m_{\text{fyr}}} & \left(j \not \in k_{\text{transfer}} \right) \quad \left(f_{\text{fyr}} \right) \\ & = \frac{k_{\text{fyr}}}{m_{\text{fyr}}} & \left(j \not \in k_{\text{transfer}} \right) \quad \left(f_{\text{fyr}} \right) \\ & = \frac{k_{\text{fyr}}}{m_{\text{fyr}}} \quad \left(f_{\text{fyr}} \right) \quad \left(f_{\text{fyr}} \right) \\ & = \frac{k_{\text{fyr}}}{m_{\text{fyr}}} \quad \left(f_{\text{fyr}} \right) \quad \left(f_{\text{fyr}} \right) \\ & = \frac{k_{\text{fyr}}}{m_{\text{fyr}}} \quad \left(f_{\text{fyr}} \right) \quad \left(f_{\text{fyr}} \right) \\ & = \frac{k_{\text{fyr}}}{m_{\text{fyr}}} \quad \left(f_{\text{fyr}} \right) \quad \left(f_{\text{fyr}} \right) \\ & = \frac{k_{\text{fyr}}}{m_{\text{fyr}}} \quad \left(f_{\text{fyr}} \right) \quad \left(f_{\text{fyr}} \right) \\ & = \frac{k_{\text{fyr}}}{m_{\text{fyr}}} \quad \left(f_{\text{fyr}} \right) \quad \left(f_{\text{fyr}} \right) \\ & = \frac{k_{\text{fyr}}}{m_{\text{fyr}}} \quad \left(f_{\text{fyr}} \right) \quad \left(f_{\text{fyr}} \right) \\ & = \frac{k_{\text{fyr}}}{m_{\text{fyr}}} \quad \left(f_{\text{fyr}} \right) \quad \left(f_{\text{fyr}} \right) \\ & = \frac{k_{\text{fyr}}}{m_{\text{fyr}}} \quad \left(f_{\text{fyr}} \right) \quad \left(f_{\text{fyr}} \right) \\ & = \frac{k_{\text{fyr}}}{m_{\text{fyr}}} \quad \left(f_{\text{fyr}} \right) \quad \left(f_{\text{fyr}} \right) \\ & = \frac{k_{\text{fyr}}}{m_{\text{fyr}}} \quad \left(f_{\text{fyr}} \right) \quad \left(f_{\text{fyr}} \right) \\ & = \frac{k_{\text{fyr}}}{m_{\text{fyr}}} \quad \left(f_{\text{fyr}} \right) \quad \left(f_{\text{fyr}} \right) \\ & = \frac{k_{\text{fyr}}}{m_{\text{fyr}}} \quad \left(f_{\text{fyr}} \right) \quad \left(f_{\text{fyr}} \right) \\ & = \frac{k_{\text{fyr}}}{m_{\text{fyr}}} \quad \left(f_{\text{fyr}} \right) \quad \left(f_{\text{fyr}} \right) \\ & = \frac{k_{\text{fyr}}}{m_{\text{fyr}}} \quad \left(f_{\text{fyr}} \right) \quad \left(f_{\text{fyr}} \right) \\ & = \frac{k_{\text{fyr}}}{m_{\text{fyr}}} \quad \left(f_{\text{fyr}} \right) \quad \left(f_{\text{fyr}} \right) \\ & = \frac{k_{\text{fyr}}}{m_{\text{fyr}}} \quad \left(f_{\text{fyr}} \right) \quad \left(f_{\text{fyr}} \right) \\ & = \frac{k_{\text{fyr}}}{m_{\text{fyr}}} \quad \left(f_{\text{fyr}} \right) \quad \left(f_{\text{fyr}} \right) \\ & = \frac{k_{\text{fyr}}}{m_{\text{fyr}}} \quad \left(f_{\text{fyr}} \right) \quad \left(f_{\text{fyr}} \right) \\ & = \frac{k_{\text{fyr}}}{m_{\text{fyr}}} \quad \left(f_{\text{fyr}} \right) \quad \left(f_{\text{fyr}} \right) \\ & = \frac{k_{\text{fyr}}}{m_{\text{fyr}}} \quad \left(f_{\text{fyr}} \right) \quad \left(f_{\text{fyr}} \right) \\ & = \frac{k_{\text{fyr}}}{m_{fyr}} \quad \left(f_{\text{fyr}} \right) \quad \left(f_{\text{f$$

Glb let XYZC $AX = \frac{3L}{5}$ 17 = 24 r be radius $\frac{3\Gamma}{2} \times \frac{\Gamma}{2} = \frac{3L}{5} \times \frac{2L}{5} \qquad (\text{products of intercepts of choods})$ $\frac{3r^{2}}{4} = \frac{6c^{2}}{25} \rightarrow \frac{c^{2}}{25} \frac{r}{8}$ $\cos A = \left(\frac{f}{2}\right)^2 + \left(\frac{3c}{5}\right)^2 - r^2$ 2(=)(3=) $= \left(\frac{r}{2}\right) + \frac{9c^2}{25} - r^2$ $r = \frac{1}{4} + \frac{9r^2}{8} - \frac{1}{2}$ 312 = 3/8 = 18 8 = 252 = 12 Q7 a) Civils being in but 2 places mean kana will go to liking. P([:/mmy]= 2!x5! 7! = 2/42 51

76) i) 1 24 M 18+ 2n= 42 132 42-Ln DM= 24 - (42-224) $= \frac{2n-18}{2}$ DM = x-9 In DAMO h2= 12- (2-9) $= n^{L} - (n^{L} - 18n + 81)$ = 18n-81 1= 9 (21-9) h= 3/2n-9 (h>0) bij) A= ± 3 J2n-9 (42-2n + 24) = 3 J2n-q (66-22) = 3 J2n-9 (33-n) $\frac{dA}{dn} = \frac{3}{52n-9} \times (-1) + (33-n) \cdot \frac{3}{2} (2n-9)^{-k} \times \sqrt{\frac{3}{2}}$ $\frac{dA}{dn} = -\frac{3}{\sqrt{2nq}} + \frac{3}{3} \frac{(3-n)}{\sqrt{2nq}}$ max a min accur when dr =0 3 1229 = 3 (33-2) J2129 2n-9 = 33-n 242 3h n = 14n 13 14 15 da 2.18 0 -196 1 is mass aren when no 14 Text Dimension 24cm, 14cm, 14cm, 14cm