BAULKHAM HILLS HIGH SCHOOL MARKING COVER SHEET

BAULKHAM HILLS

YEAR 11 YEARLY

Extension 1 2011

STUDENT NAME:
TEACHER NAME:

QUESTION	MARK
1	
2	
3	
4	
5	
6	
7	
TOTAL	

Section 1 - Answer Sheet

a)

b) \square
c)

$b=$| | | | | |
| :--- | :--- | :--- | :--- | :--- |

d) Circle the correct answer
i) True / False
ii) True / False
e)

f) \square
g)

\square

BAULKHAM HILLS HIGH SCHOOL

2011

YEAR 11 YEARLY

Mathematics Extension 1

General Instructions

- Reading time - 5 minutes
- Working time - 90 minutes
- Write using black or blue pen
- Board-approved calculators may be used
- All necessary working should be shown in every question
- Marks may be deducted for careless or badly arranged work
- Attempt all questions

Total marks - 54

This paper consists of TWO sections.

Section 1 - Short Response 7 marks

Section 2 - Extended Response marks
Attempt all questions
Start a new page for each question

Section 1 - Short Response (7 marks)

Attempt all questions. Show all necessary working

Question 1 (7 marks)-Answer the following on the answer sheet provided.

a) The letters of the word M O U S E are to be rearranged.

How many arrangements start with M and end with E ?
b) Which of the following can be a cyclic quadrilateral?
(A) kite
(B) parallelogram
(C) trapezium
(D) all of the above
c) For what value of θ and b does $\cos \theta=b$ have only one solution in the domain

$$
0^{\circ} \leq \theta \leq 360^{\circ}
$$

d)

At which point/s is the curve differentiable.

Are the following True or False.
i) Differentiable at A
ii) Differentiable at B
e)

In the diagram above, what is the value of x ?

NOT TO SCALE
f) Which diagram below is the correct graph of $|x y| \geq 1$
(A)

(B)

(C)

(D)

g) For what two values of r does ${ }^{18} \mathrm{P}_{r}={ }^{18} \mathrm{C}_{r}$

End of Section 1

Section II - Extended Response

Attempt all questions. Show all necessary working.
Start each question on a new page. Clearly indicate question number.
Write your name and teacher's name at the top of each new page.

Question 2 (9 marks) - Start a new page

Marks

a) Solve $\frac{x}{x-3} \geq 2$
b) Solve $\sin 2 x-\sin x=0$ for $0^{\circ} \leq x \leq 360^{\circ}$
c) $A B C$ is a triangle inscribed in a circle. $P A$ is a tangent to the circle and is produced to R. $P Q$ is drawn parallel to $A B$ and meets $B C$ produced at Q.
i) Copy the diagram onto your own paper
ii) Prove $A P Q C$ is a cyclic quadrilateral

Question 3 (9 marks) - Start a new page

a) i) On the same diagram sketch the graphs of $y=|x-2|$ and $\mathrm{y}=\frac{3}{\mathrm{x}}$
ii) For what values of x is $|x-2|<\frac{3}{\mathrm{x}}$?
b) i) Show that the acute angle between the lines $y=x+2$ and $y=m x+b$ is given by

$$
\tan \alpha=\left|\frac{m-1}{m+1}\right|
$$

ii) Write down a similar result for the angle β between the lines

$$
y=3 x-1 \text { and } y=m x+b
$$

iii) Hence find the gradients of the lines bisecting the angles between the lines

$$
y=x+2 \text { and } y=3 x-1
$$

Question 4 (9 marks) - Start a new page
a) Prove $\frac{1+\sin \theta-\cos \theta}{1+\sin \theta+\cos \theta}=\tan \frac{\theta}{2}$
b)

Consider the curve $y=\frac{x}{x^{2}+1}$
i) Explain why there are no vertical asymptotes
ii) Find $\lim _{x \rightarrow \infty} \frac{x}{x^{2}+1}$.
iii) Find the stationary point/s and determine their nature
iv) Sketch the curve showing the above information, given there are points of inflection when $x= \pm \frac{1}{\sqrt{3}}$.

Question 5 (9 marks) - Start a new page

a) There are 8 green cards, 8 red card and 8 yellow cards in a pack. Four cards are chosen at random without replacement.

Find the probability that

i) green cards are chosen	2

ii) At least 2 green cards are chosen
b) i) Prove that $\cot x+\tan x=2 \operatorname{cosec} 2 x \quad 2$
ii) Hence prove that $\cot 15^{\circ}=2+\sqrt{3}$

Question 6 (9 marks) - Start a new page

a) Consider the parabola $y=x^{2}$
i) Find the equation of the tangent, T, to the parabola at the point $P\left(t, t^{2}\right)$
ii) Show that the line passing through the focus of the parabola and perpendicular to T has the equation $y=\frac{t-2 x}{4 t}$
iii) M is the foot of the perpendicular drawn from the focus to the tangent at T. Find the locus of M.
b) A radius of a circle divides a chord in the ratio $3: 2$ and is bisected by the chord.

Show that $\cos A=\frac{\sqrt{2}}{4}$ where A is the acute angle between the radius and the chord.

Question 7 (9 marks) - Start a new page

a) Seven girls including Kara and Lara form a queue at the canteen. Kara does not like

Lara and will refuse to stand next to her. If they happen to be together, Kara will go back to the end of the queue. If she can't avoid Lara in this way she will leave and go to the library.

What is the probability that Kara will go to the library?
b) An isosceles trapezium is drawn with side $C D 24 \mathrm{~cm}$.

Sides $A D$ and $B C$ are equal and $A D+A B+B C=42 \mathrm{~cm}$.

i) Show that the perpendicular height h of the trapezium is $h=3 \sqrt{2 x-9}$
ii) Hence find the dimensions of the trapezium with greatest area.

End of Examination

year 11 Exienssian a yearly soutions zoll
a) 3! or 6
b) 0
c) $0=180^{\circ}, b=-1$
d) i) False
ii) True
e) 20
f) B
5) 0 and 1

Q2, a)
$\frac{x}{x-3} \geq 2$

$$
x(x-3) \geqslant 2(x-3)^{2}
$$

$$
(x-3)(x-2 x+6) \geqslant 0
$$

$$
(x-3)(6-x) \geqslant 0
$$

$$
3<x \leqslant 6
$$

b) $2 \sin x \cos x-\sin ^{2} 2=0$

$$
\begin{aligned}
& \sin x(2 \cos x-1)=0 \\
& \sin x=0 \quad \text { (0) } x=1 / 2 \\
& x=0,180^{\circ}, 360^{\circ} \\
& \therefore x=0^{\circ}, 60^{\circ}, 180^{\circ}, 300^{\circ}, 300^{\circ}
\end{aligned}
$$

2c)

Let $\angle A B R=\alpha$ $\angle A C B=\alpha$ (opetelveen a taget rod a chodat prut of. combch is equal to the aple in tra allanateggret)
$\angle Q P A=\alpha$ (arresponating $\angle L^{\prime}$, QP $\| B O$),
$\therefore \angle A P Q L$ is sych prat (extenwo sule of a agchi quadikted equll intener oppitik)

3a) i)

ii) Ats of intercection.
whever $\quad n-2=\frac{3}{n}$

$$
x^{2}-2 n-3=0
$$

$$
(x-3)(x+1)=0
$$

$$
x=-1,3
$$

$\therefore x=3, y=1$ is offorintraten
\therefore Solutan is $0<x<3$
bii) Wh $m_{1}=m \quad m_{1}=1$
$\tan \alpha=\left|\begin{array}{c}m_{1}=m_{1}-m_{2} \\ \frac{1+m_{1} m_{2}}{m_{1}}\end{array}\right|$
$=\left|\frac{m-1}{1+m+1}\right|$
\leftarrow (1) showing subeletuteon
$\tan \alpha=\left|\frac{m-1}{m+1}\right|$
ii) $\quad \tan \beta=\left|\frac{m-3}{3 m+1}\right|$
iii) Gondueds flines bisedurg is gien wher
$\tan \alpha=\tan \beta$

$$
\left|\frac{m-1}{m+1}\right|=\left|\frac{n-3}{3 m+1}\right|
$$

$$
\begin{array}{rlrl}
\frac{m-1}{m+1} & = \pm \frac{m-3}{3 m+1} & J \\
(m-1)(3 m+1) & =(m+1)(m-3) & \text { or }(n-1)(3 m+1) & =-(m+1)(m-3) \\
3 m^{2}-2 m-1 & =m^{2}-2 m-3 & \begin{array}{ll}
3 m^{2}-2 m-1 & =-m^{2}+2 m+3 \\
4 m^{2}-4 m-4 & =0
\end{array} \\
& =-2 & m^{2} & =-1 \\
n o \text { ral ist }
\end{array}
$$

Q4. a) Let $t=\tan \theta, \sin \theta=\frac{2 t}{11+t^{2}}, \cos \theta=\frac{1-f^{2}}{1+t^{2}}$

$$
\begin{aligned}
& \angle U S=\frac{1+\frac{2 t}{1+t^{2}}-\frac{1-t^{2}}{1+t^{2}}}{1+\frac{26}{1+t^{2}}+\frac{1-f^{2}}{1+t^{2}}} \\
& =\frac{1 t^{2}+2 t-11 t^{2}}{1 A^{2}+L t+1-t^{2}} \\
& =\frac{2 t^{2}+2 t}{26+2} \\
& =\frac{2 t(x+1)}{x(x+1)} \\
& =b \\
& =k n / 2 \\
& \text { =RNS. } \\
& \therefore \frac{H \sin \theta-\cos \theta}{\operatorname{lis} \theta \theta+\cos \theta}=\tan \theta
\end{aligned}
$$

b) D) for cepiuil arymphes, dencmuator muct avoll 0 . But $x^{2}+1=0$ has ns real saln. sine $x^{2}=-1$ $\therefore n s$ vetiod ssymplotes
ij)

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{(x)+x^{2}}{\left(x^{2}+1\right)-x^{2}} \\
& =\lim _{x \rightarrow \infty} \frac{1}{x} \\
& =0 \quad \text { as } \lim _{x \rightarrow \infty} \frac{1}{x} \rightarrow 0 \text { and } \lim _{x \rightarrow \infty} \frac{1}{x^{2}} \rightarrow 0
\end{aligned}
$$

46 iin

$$
\begin{aligned}
& y=\frac{x}{x^{2}+1} \\
& \frac{d y}{d x}=\frac{\left(x^{2}+1\right) \cdot 1-x(2 y)}{\left(x^{2}-1\right)^{2}} \\
& \frac{d y}{d x}=\frac{-x^{2}+1}{\left(x^{2}+1\right)^{2}}, d y
\end{aligned}
$$

Sint pouts occur when $\frac{d y}{d x}=0$
ce $0=-x^{2}+1$

$$
x^{2}=1
$$

$$
x= \pm 1
$$

Tentry | x | -2 | -1 | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{d y}{d x}$ | $\frac{-3}{25}$ | 0 | 1 | 0 | $\frac{-3}{25}$ |

$$
\therefore \text { loealain at } \quad \therefore \text { locel max tp. }
$$

biv) when $x=0, y=0$
NB Aundion is old

\int corred shape noeder to wht turing pouth labilled (NS wot

Q5 a) i) $P($ (francade $)=\frac{{ }^{8} C_{4}}{{ }^{4 C} C_{4}}$
(1) for ${ }^{8} \mathrm{C}_{4}$

$$
=\frac{5}{759}
$$

(1) for tenomato of 44 Lu ad evoluated.
ii) $P(\text { de least } L \text { greencads })^{2} 1-P($ ogreens $-p(1$ gren $)$

$$
\begin{aligned}
& =1-\frac{{ }^{16} C_{4}}{24}-\frac{{ }^{4} C_{1}{ }^{16} C_{3}}{{ }^{14} C_{4}} \\
& =1-\frac{130}{759}-\frac{160}{759} \\
& =\frac{469}{759}
\end{aligned}
$$

5b) 1)

$$
\begin{aligned}
\operatorname{LUS} & =\cot n+\tan x \\
& =\frac{\cos n}{\sin x}+\frac{\sin x}{\cos x} \\
& =\frac{\cos ^{2} n+\sin 2 x}{2 \times 2 \sin x \cos x} \\
& =\frac{1}{3 \sin 2 n} \\
& =2 \operatorname{cosec} 2 n \\
& =\text { Ros as } \operatorname{seq} 4 .
\end{aligned}
$$

ii) $\quad \cot 15^{\circ}+\tan 15^{\circ}=\frac{2}{\sin 30^{\circ}}$

$$
\begin{aligned}
& \cot 15+\frac{1}{\cot (1)^{\circ}}=4 \\
& \cot ^{2} 10^{\circ}-4 \cot 15^{\circ}+1=0 \\
& \cot 15^{\circ}=\frac{4 \pm \sqrt{16-4}}{2} \\
& \cot 15=\frac{4 \pm 2 \sqrt{3}}{2} \\
& \cos 15^{\circ}=2 \sqrt{3}
\end{aligned}
$$

or $\cot 15^{\circ}+\tan 15^{\circ}=\frac{2}{2 / 2}$

$$
=\frac{4-2 \sqrt{3}}{2}
$$

but cot $10^{\circ}=\tan 75^{\circ}$ and $\tan 75^{\circ}>1$ (1)

$$
\therefore \cot 15^{\circ}=2+\sqrt{3}
$$

$$
\begin{aligned}
& \cos 0^{\circ}\left(\tan 15^{\circ}\right.=4 \\
& \operatorname{bot} \tan 15^{\circ}=\tan \left(60^{\circ}-45^{\circ}\right) \\
&=\frac{\tan 60^{\circ}-\tan 45^{\circ}}{16 \tan 6 \tan 45^{\circ}} \\
&=\frac{\sqrt{3}-1}{16 \sqrt{3}} \times \frac{\sqrt{3}-1}{\sqrt{3}-1}
\end{aligned}
$$

$$
\begin{gathered}
=2-\sqrt{3} \\
a+1,5=4-(2-\sqrt{3})
\end{gathered}
$$

$$
=2+\sqrt{3}
$$

Ga)i) $y=x^{2}$
$\frac{d y}{d m}=2$
when $x=t, m=26$

$$
\begin{aligned}
& \therefore y-t^{2}=2 t(x-t) \\
& y-t^{2}=2 t x-2 t^{2} \\
& y=2 t x-t^{2} \text { is ays of targent }
\end{aligned}
$$

$i i)$

$$
\begin{aligned}
& n^{2}=4 n y \text { fous is }(0,1 / 4) \\
& M_{\text {pap }}=-\frac{1}{4 t} \\
& \therefore \text { hin is } y-1 / 4=-\frac{1}{2 t}(n-0) \\
& y=\frac{-n}{2 t}+\frac{1}{4} \\
& y=\frac{-2 n}{46}+\frac{7}{46} \\
& y=\frac{t-2 x}{4 t}
\end{aligned}
$$

(iii) M is point t in of (ii) and (i)

$$
\begin{aligned}
& \frac{t-2 n}{4 t}=2 t n-t^{2} \\
& t-2 n=8 t^{2} n-4 t^{3} \\
& 8 t^{2} n+2 x=4 t^{3} t t \\
& 2 x\left(4 t^{2}+1\right)=t\left(4 t^{2}+1\right) \\
& x=\frac{t}{2} \\
& y=2 t\left(\frac{t}{2}\right)-f \\
& y=0 \\
& \therefore M \text { i }(t, 0)
\end{aligned}
$$

louns of M is $y=0$

G(b)

let $x y=c$

$$
A x=\frac{3 c}{5}
$$

$$
1 y=\frac{26}{5}
$$

r be radins

$$
\begin{aligned}
& \frac{3 r}{2} \times \frac{r}{2}=\frac{3 c}{5}+\frac{2 c}{5} \quad(\text { oratuds of intercphts of chodi) } \\
& \frac{3 r^{2}}{4}=\frac{6 c^{2}}{25} \rightarrow \frac{c^{2}}{25}=\frac{r^{2}}{8}
\end{aligned}
$$

$\cos A=\frac{\left(\frac{r}{2}\right)^{2}+\left(\frac{3 c}{5}\right)^{2}-r^{2}}{2\left(\frac{r}{2}\right)\left(\frac{3 c}{5}\right)}$
$=\frac{\left(\frac{r}{2}\right)+\frac{q_{2}^{2}}{25}-r^{2}}{r 3 \frac{r}{2} \sqrt{2}}$
$=\frac{\frac{r^{2}}{4}+\frac{9 r^{2}}{8}-r^{2}}{\frac{3 r^{2}}{2 \sqrt{2}}}$
$=\frac{\frac{3}{8}}{3 \sqrt[3]{8}}$
$=\frac{\sqrt{8}}{8}$

$$
=\frac{2 \sqrt{2}}{8}
$$

$$
=\frac{\sqrt{2}}{4}
$$

Q7a)
Giris bering in lant 2 plowes mean Kara will go bo Whrary.

$$
\begin{aligned}
P(\text { Horny }) & =\frac{2!x 5!}{7!} \\
& =\frac{2}{42} \\
& =1
\end{aligned}
$$

7b) i)

$$
13+2 x=42
$$

$$
A 3=42-L n
$$

$$
m_{m}=\frac{24-(4 L-2 \pi)}{2}
$$

$$
=\frac{2 n-18}{2}
$$

$D M=x-9$
In $\triangle A M D$

$$
\begin{aligned}
h^{2} & =x^{2}-(n-9)^{2} \\
& =x^{2}-\left(x^{2}-18 x+81\right) \\
& =18 n-81 \\
h^{2} & =9(2 x-9) \\
h & =3 \sqrt{2 n-9} \quad(h>0)
\end{aligned}
$$

bï)

$$
\begin{aligned}
A & =\frac{1}{2 \sqrt{2 n-9}}(42-2 n+24) \\
& =\frac{3}{2} \sqrt{2 n-9}(66-2 x) \\
& =3 \sqrt{2 n-9}(33-n) \\
\frac{d s}{d n} & =3 \sqrt{2 x-9} \times(-1)+(33-n) \cdot \frac{3}{x x}(2 x-9)^{-1 / 2} x \\
\frac{d s}{d n} & =-3 \sqrt{2 n-9}+\frac{3(33-n)}{\sqrt{2 n-9}}
\end{aligned}
$$

\max ar min cecur uber $\frac{d s}{d k}=0$

$$
\begin{aligned}
3 \sqrt{2 n-9} & =\frac{3(33-n)}{\sqrt{2 x-9}} \\
2 n-9 & =33-n \\
3 n & =42
\end{aligned}
$$

$$
n=14
$$

Tent

x	13	14	15
$\frac{d s}{d h}$	$2-14$	0	-1.96

Dimersion $24 \mathrm{~cm}, 14 \mathrm{~cm}, 14 \mathrm{~cm}, 14 \mathrm{~cm}$

