BAULKHAM HILLS HIGH SCHOOL

2012

YEAR 11 YEARLY

Mathematics Extension 1

General Instructions

- Reading time - 5 minutes
- Working time - 1 hour and 30 minutes
- Write using black or blue pen
- Board-approved calculators may be used
- All necessary working should be shown in every question
- Marks may be deducted for careless or badly arranged work
- Attempt all questions

Total marks - 60

This paper consists of TWO sections.
Section 1 - Multiple Choice
6 marks
Section 2 - Extended Response 54 marks
Attempt all questions
Start a new page for each question

Section 1 -Multiple Choice (6 marks)

Attempt all questions.

Answer the following on the answer sheet provided.

1 Let A be the point $(-2,3)$ and B be the point $(3,-4)$. Find the coordinates of the point which divides $A B$ externally in the ratio $3: 2$
(A) $\left(0, \frac{1}{5}\right)$
(B) $\left(1,-\frac{6}{5}\right)$
(C) $(-12,17)$
(D) $(13,-18)$

2 The line $y=3 x+7$ and $y=m x$ intersect at an angle of 135°, as shown in the diagram.

A possible value for m is
(A) $\frac{1}{3}$
(B) -2
(C) 3
(D) $-\frac{1}{2}$

3 From six girls and four boys, a committee of 3 girls and 2 boys is to be chosen.
How many different committees can be formed?
(A) 26
(B) 120
(C) 252
(D) 1440

4 Let $t=\tan \frac{\theta}{2}$ where $0<\theta<180^{\circ}$. Which of the following gives the correct expression for $\sec \theta+\tan \theta$?
(A) $\frac{1-t}{1+t}$
(B) $\frac{1+2 t+t^{2}-t^{3}}{1-t}$
(C) $\frac{1+t}{1-t}$
(D) $\frac{t^{2}-2 t-1}{1+t^{2}}$

O is the centre of the circle. $P Q$ and $R S$ are chords which intersect at $E . P R \neq S Q$.

Consider the following
I Triangles PER and SEQ are similar II Triangles $P Q R$ and $E R Q$ are similar

Which is true?
(A) I only
(B) II only
(C) Both I and II
(D) Neither I nor II

6 The equation of the normal to the parabola $x^{2}=4 a y$ at the variable point $P\left(2 a p, a p^{2}\right)$ is given by $x+p y=2 a p+a p^{3}$
How many different values of p are there such that the normal passes through the focus of the parabola?
(A) 0
(B) 1
(C) 2
(D) 3

End of Section I

Section II - Extended Response

Attempt all questions. Show all necessary working.
Start each question on the appropriate page. Clearly indicate the question number.

Question 7 (9 marks) - Start a new page

a) Solve $\tan 2 x=3 \tan x$ for $0^{\circ} \leq x \leq 360^{\circ}$
b) i) How many seven digit numbers can be formed using the digits

$$
3,3,3,3,5,5,5 \text { ? }
$$

ii) How many five digit numbers can be formed using the digits

$$
3,3,3,3,5,5,5 \text { ? }
$$

c) Solve $\frac{2 x+1}{3 x-2} \leq 2$

Question 8 (9 marks) - Start a new page

a) A committee of four is to be formed from 5 men and 4 women. In how many ways can the committee be chosen if :-
(i) there are no restrictions? 1
(ii) it is formed with 2 men and 2 women?
(iii) it contains at least 2 women?
b)

$P T$ is an observation tower 50 m high. The bearing of two points A and B from P are $025^{\circ} \mathrm{T}$ and $125^{\circ} \mathrm{T}$ respectively. The angles of elevation from the points A and B to the top of the tower are 35° and 50° respectively.
(i) Find $\angle A P B$
(ii) Show that $A B^{2}=50^{2}\left(\cot ^{2} 35^{\circ}+\cot ^{2} 50^{\circ}-2 \cot 35^{\circ} \cot 50^{\circ} \cos 100^{\circ}\right)$
(iii) Hence find $A B$ to the nearest metre.

Question 9 (9 marks) - Start a new page

a)
(i) Prove that $\sin (A+B)-\sin (A-B)=2 \cos A \sin B$
(ii) Hence or otherwise show that

$$
2 \sin x(\cos 3 x+\cos 5 x+\cos 7 x)=\sin 8 x-\sin 2 x
$$

b)

In the diagram A, P and B are points on the circle. The line $P T$ is tangent to the circle at P, and $P A$ is produced to C so that $B C$ is parallel to $P T$.
(i) Show that $\angle P B A=\angle P C B$
(ii) Prove that triangles $A B P$ and $B C P$ are similar
(iii) Hence deduce that $P B^{2}=P A \times P C$

Question 10 (9 marks) - Start a new page

a) Solve $12 \cos \theta-5 \sin \theta+6=0$, for $0^{\circ} \leq \theta \leq 360^{\circ}$, correct to the nearest degree.
b)

A cylinder of radius $r \mathrm{~cm}$ and height $h \mathrm{~cm}$ is inscribed in a cone with base radius 3 cm and height 10 cm as in the diagram.
(i) Show that the volume V of the cylinder is given by $V=\frac{10 \pi r^{2}(3-r)}{3}$
(ii) Hence find the values of r for the cylinder which has the maximum volume.
(iii) What is the maximum volume of the cylinder?

Question 11 (9 marks) - Start a new page

a) (i) By considering the difference of two cubes, show that

$$
(2+x)^{\frac{1}{3}}-2^{\frac{1}{3}}=\frac{x}{(2+x)^{\frac{2}{3}}+2^{\frac{1}{3}}(2+x)^{\frac{1}{3}}+2^{\frac{2}{3}}}
$$

(ii) Hence evaluate $\lim _{x \rightarrow 0} \frac{(2+x)^{\frac{1}{3}}-2^{\frac{1}{3}}}{x}$
b) (i) For the curve $y=\frac{4}{\sqrt{16+x^{2}}}$ find any stationary points and determine their nature.
(ii) Find any points of inflexion and hence sketch the curve showing any significant features.

Question 12 (9 marks) - Start a new page

$P\left(4 p, 2 p^{2}\right)$ is a point on the parabola $x^{2}=8 y$, with focus S, as in the diagram.

(i) Show that the equation of the tangent at P is given by $y=p x-2 p^{2} \quad 2$
(ii) Show that the equation of the line through S and perpendicular to $S P$ is

$$
2 p x+\left(p^{2}-1\right) y=2\left(p^{2}-1\right)
$$

(iii) The tangent and this line meet at M. Prove that the co-ordinates of M are $\left(\frac{2\left(p^{2}-1\right)}{p},-2\right)$.
(iv) Show that the area of $\triangle P S M=\frac{2\left(p^{2}-1\right)^{2}}{|p|}$

(8)
a.c) $9_{4}-126$
$-$
7a) th $2 x=3 t 2 x$

$$
\begin{aligned}
& \frac{2 \hbar x}{1-\tan ^{2} x}=8 \operatorname{tax} \\
& 2 h_{x}=3 \operatorname{tax}-32^{\overline{3} x} \\
& \therefore \operatorname{th} x-3 h^{\prime} x=0 \\
& \tan \left(1-3 \operatorname{t}^{\prime} x\right)=0
\end{aligned}
$$

Lose af tim:
11) $\quad 5 C_{2} \cdot{ }^{4} c_{2}=60$ 1
III) $2 w \geqslant 60$
\qquad

$$
3 w \rightarrow 54,43=54=20
$$

$$
4 w \rightarrow 1
$$

$$
T 20 \mathrm{~m}=60+20+1=81
$$

b)

$$
\text { 1) } \angle A P B=125-25=100^{\circ}
$$

b) $1 \frac{\pi!}{4!3}=3.5$
$B P=50 \cot 50^{\circ} \quad$ sumerm $A P=50 \operatorname{cor} 30^{\circ}$

$$
\text { 11) } \begin{aligned}
33335 & =x \\
33355 & =10-1 \\
& =10-1355
\end{aligned}
$$

$\therefore \quad \triangle A P B \quad A B^{2}=B P^{2}+A P^{2}=2 B P \cdot A P \cdot \cos \angle \frac{1}{A P B}$

$$
=50^{\circ} \cos ^{2} 50^{\circ}+50^{\circ} \cos ^{2} 35^{\circ}=250^{\circ} \cos \pi 0^{\circ} \frac{\cos 30^{\circ} \cos \alpha}{1}
$$

$$
=50^{2}\left(\cot ^{2} 50^{\circ}+\cos ^{2} 35^{\circ}-20 \operatorname{ts0^{\circ }} \cot 35 \cos \cos \right.
$$

c)

$$
\begin{gathered}
\frac{2 x+1}{3 x-2} \leqslant 2 \quad x=\frac{2}{3} \\
(2 x+1)(3 x-2) \leqslant 2(3 x-2)^{2} \\
2(3 x-2)^{2}-(3 x-2)(2 x+1) \geqslant 0 \\
(3 x-2)(-2 x-4-2 x-1) \geqslant 0 \\
-(3 x-2)(4 x-x) \geqslant 0 \\
x-2 \quad \text { or } x \geqslant \frac{5}{4}
\end{gathered}
$$

9a) 1)

$$
\begin{align*}
& \ln (A+B)-h(A-B) \\
& =\operatorname{AiA} A B+A B C A-\sin A \operatorname{Co} B+\operatorname{An} B \operatorname{Cos} A \\
& \therefore 2 \cos \alpha A B=R A B \tag{1}
\end{align*}
$$

-II)

$$
\begin{aligned}
& 2 \sin \sin x+2 m n \cos x+2 n 2 \cos x
\end{aligned}
$$

$$
\begin{aligned}
& =n 2 x-m 2 x \\
& \text { Ad }
\end{aligned}
$$

$$
\begin{equation*}
\therefore \angle P B A=<\pi B \tag{10}
\end{equation*}
$$

11) IN $\triangle \rightarrow A B P$ Awy $B C P$

$$
\angle R B A=\angle T C R \text { (PRoven wo) }\}^{1}
$$

\angle Bpe is cammor to Bott peimere?
$\therefore \triangle A B P I I I \triangle B C P$ (AA, AAA, equiaumlar (1) all matariy $<s \Rightarrow$
iii) $\frac{P B}{A P}=\frac{P C}{P B}($ ratan of milh ΔP)

$$
\begin{equation*}
\because P B^{\prime}=P A \cdot P C \tag{10}
\end{equation*}
$$

$$
\begin{aligned}
& \begin{array}{l}
12 \cos \theta-5 \pi \theta+6=0 \\
\therefore \quad 5 \pi \theta-12 \cos \theta=6 \quad\left(\sqrt{5^{2}+n^{2}}=13\right), ~
\end{array} \\
& \frac{r}{3} \operatorname{No} \theta-\frac{12}{3} G O=\frac{6}{3} \\
& \therefore \sin \cos 2-\operatorname{cosin} 2=\frac{6}{13} \quad 1 \\
& \mu(\theta-67.36)=\frac{6}{13} \quad t 2=\frac{12}{7} \\
& \theta-67.38=27.49 \text { or } 152.51 \quad \alpha=67.38 \\
& \therefore \theta=95^{\circ} \text { or } 220 \quad 1
\end{aligned}
$$

b.)

$\operatorname{sun} \theta \rightarrow v \quad \therefore v=\pi r^{2} \cdot \frac{10\left(\frac{3-r)}{3}\right.}{3}$

$$
\begin{aligned}
& V=\operatorname{lom}^{2} \frac{(3-r)}{3} \\
& =10 \frac{\pi}{5}\left(3 r^{2}-r^{3}\right) \quad 1 \\
& V^{\prime}=104\left(6 r-3 r^{2}\right) \\
& 1 \frac{1}{3} \pi 3 r(2-r) \\
& =0 \text { wh } r=0 \text { or } 2 \\
& r=0 \quad v=0 \\
& r=2 \Rightarrow
\end{aligned}
$$

(11) a_{1})

$$
\begin{aligned}
& \left(A^{3}-B^{3}\right)=(A-B)\left(a^{2}+A B+B^{2}\right) \\
& A-B=\frac{A^{3}-B^{3}}{A^{2}+A B+B^{2}} \\
& \text { at } A=\{2+x)^{\frac{1}{2}} \quad B=2^{\frac{1}{3}} \quad \frac{1}{2}
\end{aligned}
$$

4)

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{(2 x)^{3}-2^{\frac{1}{3}}}{x} \\
& =\lim _{x \rightarrow 0} \frac{1}{(2 x+x)^{3}+2^{1}(2 x x)^{2}+2^{2}} \\
& =\frac{1}{\frac{1}{2^{2}+2^{\frac{2}{3}}+2^{2 / 3}}} \\
& =\frac{1}{3 \cdot 2^{\frac{2}{3}}}
\end{aligned}
$$

(1 b) i)

$$
\begin{aligned}
& y=\frac{4}{\sqrt{16+x^{2}}} \\
& y=4\left(16+x^{2}\right)^{-2} \\
& y^{\prime}=-2\left(16+x^{2}\right)^{-1 / 2} \cdot 2 x \\
& y^{\prime}=\frac{-4 x}{\left(16+x^{2}\right)^{2}}
\end{aligned}
$$

Stationay pointo ocaur when $y^{\prime}=0$

$$
\begin{aligned}
& 0=\frac{-4}{\left(16 x^{2}\right)^{3 / 2}} \\
& x=0 \\
& \text { stat. pt at }(0,1)
\end{aligned}
$$

Testing 2.0

$$
\begin{array}{llll}
x & \frac{-1}{9} & 0 \\
5^{1} & 0 & \frac{4}{7^{2}} & 0
\end{array}
$$

ii)

$$
\begin{aligned}
& =\frac{122^{2}}{\left(16 x^{2}\right)^{5}}-4 \frac{\left(81 x^{2}\right)^{2}}{\left(16 x^{2}\right)^{2}} \\
& S^{\prime \prime}=\frac{8 x^{2}-64}{\left(16+x^{2}\right)^{3 / 2}}=\frac{8\left(x^{2}-8\right)}{\left(16+x^{2}\right)^{2 / 2}} \\
& \text { Pant of if fexara mayy ocewr whan } y^{\prime \prime}=0 \\
& \text { (1) } 8 n^{2}-64=0 \\
& r^{2}=8
\end{aligned}
$$

Bing sf infle at $\left(\pm 2 \sqrt{2} \frac{\sqrt{3}}{5}\right)$

$$
\text { as } x \rightarrow \infty, y \rightarrow 0^{\prime}, \text { es } x \rightarrow-\infty, y \rightarrow 0^{+} .
$$

