

BAULKHAM HILLS HIGH SCHOOL

YEARLY 2013

YEAR 11 TASK 4

Mathematics Extension 1

General Instructions

- Reading time - 5 minutes
- Working time - 90 minutes
- Write using black or blue pen
- Board-approved calculators may be used
- Show all necessary working in Questions 11-13
- Marks may be deducted for careless or badly arranged work

Total marks - 55
Exam consists of 8 pages.

This paper consists of TWO sections.

Section 1 - Pages 2-4 (10 marks) Questions 1-10

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II - Pages 5-8 (45 marks)

- Attempt questions 11-14
- Allow about 1 hour and 15 minutes for this section

Section I

10 marks

Attempt questions 1-10
Allow about 15 minutes for this section
Use the multiple choice answer sheet for questions 1-10

1. Make G the subject of the formula $E=1+\sqrt{\frac{G}{R}}$
(A) $G=R(1+E)^{2}$
(B) $G=R\left(1+E^{2}\right)$
(C) $G=R\left(1-E^{2}\right)$
(D) $G=R(1-E)^{2}$
2. The number of different arrangements of the letters of the word SERVICES which begin and end with the letter S are
(A) $\frac{6!}{(2!)^{2}}$
(B) $\frac{8!}{(2!)^{2}}$
(C) $\frac{6!}{2!}$
(D) $\frac{8!}{2!}$
3.

$A B$ is a tangent to the circle, $B C=2 \mathrm{~cm}$ and $C D=5 \mathrm{~cm}$. The length of $A B$ is
(A) $\sqrt{10}$
(B) $\sqrt{14}$
(C) $\sqrt{20}$
(D) $\sqrt{35}$
4. If $t=\tan \frac{\theta}{2}$ then $4 \sin \theta-3 \cos \theta=4$ results in the equation
(A) $7 t^{2}-8 t+7=0$
(B) $4 t^{2}+3 t=0$
(C) $3 t^{2}-8 t+7=0$
(D) $t^{2}-8 t+7=0$
5. The number of solutions of the equation $\sin 2 x=\cos x$ where $0^{\circ} \leq x \leq 360^{\circ}$ is
(A) 2
(B) 3
(C) 4
(D) 5
6. What is the size of the acute angle between the lines $x=1$ and $y=2 x-1$?
(A) $22 \frac{1}{2} \circ$
(B) 27°
(C) 45°
(D) 63°
7. The graph of $y=|x|+|x-1|$ is
(A)

(B)

(C)

(D)

8.

T divides $P Q$ internally in the ratio $2: 1$
R divides $P Q$ externally in the ratio 2: 1 .
In what ratio does Q divide $R T$?
(A) $3: 1$
(B) $1: 3$
(C) $3: 4$
(D) $4: 3$
9. In triangle $P Q R, P S$ and $S R$ both have a length of $1 \mathrm{~cm} . Q R$ is 2 cm .

The value of $\tan \theta$ is
(A) $\frac{1}{3}$
(B) $\frac{1}{\sqrt{5}}$
(C) $\tan \left(22 \frac{1}{2}^{\circ}\right)$
(D) $\frac{1}{2}$
10. The nine points $P, Q, R, S \ldots W, X$ lie equally spaced around the circumference of a circle.

The number of distinct triangles that can be formed so that the centre of the circle lies in the interior of each triangle is
(A) 28
(B) 30
(C) 84
(D) 90

End of Section 1

Section II

45 marks
Attempt questions 11-13
Answer each question on the appropriate page of your writing booklet. Extra writing paper is available. Each piece of additional writing paper must show your number. Clearly indicate the question number.
In Questions 11-13, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 Start on the appropriate page in your writing booklet.
a) Find the exact value of $\sin 15^{\circ}$
b) Find the coordinates of the point which divides the interval $A B$ with $A(1,4)$ and $B(5,2)$ externally in the ratio 1:3.
c) Find the Cartesian equation for the parametric equations

$$
x=\cos 2 t \text { and } y=\cos t
$$

d) Solve for x :

$$
\left|x^{2}-5\right|=5 x+9
$$

e) Solve for x : $\quad \frac{1}{x}<\frac{1}{x+1}$
f) Find the acute angle between the tangents to $y=x^{2}$ at $x=-1$ and $x=2$.

Give your answer to the nearest degree.

End of Question 11

Question 12 Start on the appropriate page in your writing booklet.
a) (i) Express $\sqrt{3} \cos x-\sin x$ in the form $A \cos (x+\alpha)$ where $A>0$ and α is acute.
(ii) Hence, solve $\sqrt{3} \cos x-\sin x=-2$ for $0^{\circ} \leq x \leq 360^{\circ}$.
c) A group of tourists waiting to board a flight is comprised of 3 Americans, 4 Germans and 6 New Zealanders.
(i) How many ways can they all line up?
(ii) How many ways can the Americans and the Germans line up to board the plane if no New Zealanders board?
(iii) How many ways can the group line up to board the plane if the New Zealanders are included but no two New Zealanders stand next to each other?
d)

P is the point (2ap, $a p^{2}$) on the parabola $x^{2}=4 a y$ and l is the equation of the tangent at P. The tangent at P intersects the x axis at A and the y axis at B.
(i) Prove that the equation of l is $y=p x-a p^{2}$
(ii) Find the coordinates of A and B.
(iii) In what ratio does P divide $A B$?

End of Question 12

Question 13 Start on the appropriate page in your writing booklet.
a)

$P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$ are two points on the parabola $x^{2}=4 a y$. The chord $P Q$ subtends a right angle at the origin, O. R is the fourth vertex of the rectangle $P O Q R$.
(i) Prove $p q=-4$
(ii) Prove that R has coordinates: $x=2 a(p+q), y=a\left(p^{2}+q^{2}\right)$
(iii) Prove that the Cartesian equation of the locus of R is $x^{2}=4 a(y-8 a)$
b) In the diagram, $M C N$ is a straight line. Circles are drawn with centre M, radius $M C$, and centre N, radius $N C . A B$ is a common tangent to both circles, with the points of contact at A and B respectively. $C D$ is a common tangent and meets $A B$ at D.

(i) Copy the diagram
(ii) It can be proven that $\triangle A D C|\mid \triangle B N C$. (Do NOT prove this).

Explain why $A M C D$ is a cyclic quadrilateral.
(iii) Prove that $M D \| C B$

Question 13 (continued)
c) A bag contains 3 red balls, 2 green balls, 2 yellow balls, 2 white balls and 1 black ball. Four balls are chosen from the bag.
(i) How many ways are possible in which 3 of the balls are the same colour?
(ii) How many different combinations are possible?
d) A vertical mast stands on the north bank of a river with straight parallel banks running east to west.

The angle of elevation of the top of the mast is α when measured from point A on the south bank at a distance of 5 m to the west of the mast and β when measured from point B on the south bank at a distance of 3 m to the east of the mast.
Show that the height, h, of the mast is $h=\frac{4}{\sqrt{\cot ^{2} \alpha-\cot ^{2} \beta}}$

End of paper

year Il Prebiminary Extension 12013
yearly
1.

$$
\begin{aligned}
& E-1=\sqrt{\frac{G}{R}} \\
&(E-1)^{2}=\frac{G}{R} \\
& a=R(E-1)^{2} \\
& c=R(1-E)^{2} \\
& \therefore D
\end{aligned}
$$

Nu. of ways $=\frac{6!}{2!}$

$$
\therefore C
$$

3.

$$
\begin{aligned}
A B^{2} & =B C . B D \\
& =2 \times 7 \\
& =14 \\
A B & =\sqrt{14} \\
& \therefore B
\end{aligned}
$$

4.

$$
\begin{gathered}
4 \times 2 t-3 . \frac{\left(1-t^{2}\right)}{1+t^{2}}=4 \\
\frac{8 t-3+3 t^{2}}{1+t^{2}}=4 \\
8 t-3+3 t^{2}=434 t^{2} \\
0=t^{2}-8 t+7 \\
\therefore D
\end{gathered}
$$

5. $2 \sin x \cos x=\cos x$

$$
2 \sin x \cos x-\cos x=0
$$

$$
\cos x(2 \sin x-1)=0
$$

$$
\cos \alpha=0 \quad \sin x=1 / 2
$$

$$
2=\frac{\pi}{2}, \frac{5 \pi}{2}, \frac{\pi}{8}, \frac{5 \pi}{6}
$$

$\therefore 4$ sulutions
6.

$\tan \alpha=2$

$$
\begin{aligned}
& \alpha=6)^{\circ} \\
& \theta=90^{\circ} .63^{\circ}
\end{aligned}
$$

$$
\therefore \dot{B}^{27^{\circ}}
$$

7. Belween $x=0$ nod 1 is $0 \leqslant x<1$

$$
\begin{aligned}
& y=x+-(x-1) \\
& y=1
\end{aligned}
$$

8.

$$
\therefore A
$$

9.

$$
\begin{aligned}
& \tan (\theta+\alpha)=\frac{2}{2} \\
& \frac{\tan \theta+\tan \alpha}{1-\tan \theta \tan \alpha}=1 \\
& \tan \theta+\frac{1}{2}=1-\tan \theta \times \frac{1}{2} \\
& \frac{3}{2} \tan \theta=\frac{1}{2} \\
& \tan \theta=\frac{1}{3}
\end{aligned}
$$

Tolut prosite $\Delta={ }^{9} C_{3}$

$$
=84^{\circ}
$$

Determine treangles not antaining ceatre.
KNMT, choove T and zothers fom U, v, w_{1}, x ie ${ }^{4} C_{2}{ }^{3} 6$ Q chube Tand 2 others from $S, R, P Q$ ie ${ }^{4} C_{2}=6$ or chook T and 2 othes fom V, U, S, R ie ${ }^{4} C_{2}=6$ But there are 9 ve:tious $\therefore(6+6+6) \times 9=162$ But $T($ and $S R), S(\operatorname{and} T R), R \operatorname{con}(15)$ arcall the sane $\therefore \frac{162}{3}=54$.

$$
84-54^{3} \times 30 \therefore B
$$

(11 a) $\sin 15^{\circ}: \sin (60-45)$

$$
\begin{aligned}
& =\sin 60^{\circ} \cos 45^{\circ}-\cos 60^{\circ} \sin 45^{\circ} \\
& =\frac{\sqrt{3}}{2} \cdot \frac{1}{\sqrt{2}}-\frac{1}{2} \cdot \frac{1}{\sqrt{2}} \\
& =\frac{\sqrt{3}}{2 \sqrt{2}}-\frac{1}{2 \sqrt{2}} \\
& =\frac{\sqrt{3}-1}{2 \sqrt{2}}
\end{aligned}
$$

b)
C)

$$
\begin{aligned}
& x=\cos 24 \\
& y=\cos t
\end{aligned}
$$

$$
x=2 \cos ^{2} t-1
$$

$$
\left.x=2 y^{2}-1 \quad \checkmark \text { (ISE) Morn (no in this }\right)
$$

d)

$$
\begin{aligned}
& \quad\left|x^{2}-5\right|=5 x \\
& x^{2}-5=5 x+9 \\
& x^{2}-5 x-14=0 \\
& (x-7)(x+2)=0 \\
& x=-7 \times 7 \\
& \therefore x=7
\end{aligned}
$$

$$
x^{2}-5=-5 x-9
$$

$$
x^{2}-5 x-14=0
$$

$$
x^{2}+5 x+4=0
$$

$$
(x-7)(x+2)=0, \quad(x+4)(x+1)=0
$$

$$
x=-x 4,-1
$$

$$
x=-1
$$

$\therefore x=-1$ and 7
(2) If $x=7$ onty or $x=-1$ onby
(1) if $x=-2,7$ or $x=-4,-1$
e)

$$
\begin{aligned}
& \frac{1}{x}<\frac{1}{x+1} \quad(x \neq 0,-1) \\
& x(\lambda+1)^{2}<x^{2}(x+1)
\end{aligned}
$$

$$
\begin{aligned}
& \left.\begin{array}{rl}
A(1,4) & B(5,2) \\
-1: & 3
\end{array}\right\} \\
& x=\frac{3-5}{3-1} \quad y=\frac{12-2}{3-1} \text { sunge error } \\
& u=\frac{-2}{2}, y=\frac{10}{2} \text {, (1) if wred } \\
& \therefore P^{2} \text { is }(-1,5)^{\text {internal }} \text { acroninatues }
\end{aligned}
$$

$$
\begin{aligned}
& k(x+1)[x+1-x]<0 \\
& x(x+1)<0
\end{aligned}
$$

$$
\text { f) } \begin{aligned}
y & =x^{2} \\
\frac{d y}{d x} & =2 x
\end{aligned}
$$

(1) correct gradiants

Af $x=-1, \quad m_{1}=-2$
Af $x=2, m_{2}=4$

$$
\begin{aligned}
\tan \theta & =\left|\frac{4-(-2)}{1+4 \times(-2)}\right| \\
& =\left|\frac{6}{-7}\right| \\
& =40^{\circ} 36^{\prime} .4 .6 \ldots
\end{aligned}
$$

$\div 41^{\circ}$ rearest degree

$$
\begin{aligned}
& 12 \text { a(1) } A=\sqrt{(\sqrt{3})^{2}+1^{2}} \\
&=2 \\
& B \cos x-\sin x \equiv 2 \cos (x+\alpha) \\
& \frac{3}{2} \cos x-\frac{1}{2} \sin x=\cos x \cos \alpha-\sin x \sin \alpha \\
& \therefore \cos \alpha=\frac{\sqrt{3}}{2} \\
& \sin \alpha=\frac{1}{2} \\
& \tan \alpha=\frac{1}{\sqrt{3}} \\
& \alpha=30^{2} \\
& \therefore \sqrt{3} \cos x-\sin x=2 \cos \left(x+30^{\circ}\right)
\end{aligned}
$$

(1) corrathy
subidities

12 a ii)

$$
\begin{aligned}
2 \cos \left(x+30^{\circ}\right) & =-2 \\
\cos \left(x+30^{\circ}\right) & =-1 \quad 0 \leq \pi \leq 360^{\circ} \\
x+30^{\circ} & =190^{\circ} \quad 30^{\circ} 5\left(x+30^{\circ} \leq 390^{\circ}\right. \\
x & =150^{\circ}
\end{aligned}
$$

b) $\quad \cos 2 \theta+\sin ^{2} \theta=\frac{1}{2}$
$\cos ^{2} \theta-\sin ^{2} \theta+\sin ^{2} \theta=\frac{1}{2} \quad\binom{$ rundle $\alpha}{$ for cos $2 \theta)}$
c) i) 13 !
ii) 7! $=5040)$
iii) Arercains \& Gemenns $7!$ ways

$$
-A-a_{-} A-a_{-} A-a_{-} G-
$$

insert 6 Now Lealandars in ${ }^{8} P_{6}$ way l.

$$
\begin{aligned}
\therefore \text { Total ways } & =7!\times{ }_{8}^{8} \\
& =5040 \times 20160 \\
& =101606400 \text { ways }
\end{aligned}
$$

$12 d i)$

$$
\text { i) } \begin{aligned}
y & =\frac{x^{2}}{4 a} \\
\frac{d y}{d x} & =\frac{2 x}{4 a}=\frac{x}{2 a} \\
A b x=2 a p, \frac{d y}{d x} & =\frac{2 a p}{2 a} \\
& =p \\
y-y_{1} & =m\left(x-x_{1}\right) \\
y-a p^{2} & =p(x-2 a p) \\
y-a p^{2} & =p x-2 a p^{2} \\
y & =p x-a p^{2}
\end{aligned}
$$

d ii) for A: $\quad D=p x-a p^{2}$

$$
\begin{aligned}
& p k=a p^{2} \\
& \lambda=a p \therefore N(a p, \Delta) p \neq 0 .
\end{aligned}
$$

for B :

$$
\begin{aligned}
& y=-a p^{2} \\
& \therefore B\left(0,-a p^{2}\right)
\end{aligned}
$$

diii) Let ratio be ki A (apo) bo, api)

$$
\begin{aligned}
\therefore 2 a p & =\frac{a p+0}{k+1} \\
k+1 & =\frac{1 g p}{2 a p} \\
k & =-\frac{1}{2}
\end{aligned}
$$

$\therefore P$ divides $A B$ externally in ratio $1: 2$ or
P divides $A B$ in ratios $-1: 2$.

$$
\begin{aligned}
13 a) i m_{\infty p} & =\frac{a p^{2}}{2 a p} \quad m_{o u}
\end{aligned}=\frac{\frac{a q^{2}}{2 a q}}{}=\frac{p}{2} \sqrt{ }=\frac{q}{2}
$$

since $O P \perp O Q \frac{P}{2} \cdot \frac{q}{2}=-1$
(1)fids one of the gedents.

$$
p q=-q
$$

a i) Since $P O Q R$ is a rectangle and
opposite sides are equal and parallel then R is loq units left of P and $a q^{2}$ units abuse P
ie $x=2 c y+2 x q$

$$
a=2 a\left(p^{\prime} q\right)^{p}
$$

$$
y=a p^{2}+a q^{2}
$$

$$
y=a\left(p^{2}+q^{2}\right)
$$

OB Mupout $P Q=\frac{2 a p+1 a q}{2}, \frac{a p^{2} l a q^{2}}{2}$

$$
\begin{aligned}
& \therefore R \Rightarrow \quad \frac{2 a p+2 a q}{2}=\frac{0+x_{R}}{2} \quad \frac{a p^{2}+a q^{2}}{2}=\frac{0+y_{R}}{2} \\
& \therefore R=2 a(p+q), a\left(p^{2}+q^{2}\right)
\end{aligned}
$$

B_{3}

$$
\begin{aligned}
& x^{2}=2 a\left(p^{1} q\right) \quad y=a\left(p^{2}+q^{2}\right) \\
& x^{2}=4 a^{2}\left(p^{2}+q^{2}+2 p q\right) \\
& x^{2}=4 a^{2}\left(\frac{y}{a}+2 x-4\right)
\end{aligned}
$$

$x^{2}=4 a^{2}\left(\frac{y}{a}-8\right)$
$x^{2}=4 a(y-8 a)$
(i) attempts bise

13b) i)

Bb ii) AM $\perp A D$ (radius \& tangent)

$$
\therefore \angle M A D=90^{\circ}
$$

Also CMACO (radius If tangent) T^{\checkmark} either

$$
\therefore \angle M C D=90^{\circ}
$$

In $A M C D . \angle M A D+\angle M C D=90^{\circ}+90^{\circ}$

$$
=18{ }^{\circ}
$$

$\therefore A M C D$ is a cache phadrlateral (upposititanior Ls are mppleradary)
iii) Similarly BNCD is a cyclic quadrilateral.
$\checkmark \angle D A C=\angle N C B($ matching $\angle S$ in simile $\quad \triangle N$)
$\checkmark \angle D M C=\angle D A C$ (L 's at circumference standing an same chore of (cyclic quad. $A O C M$)

$$
\therefore \angle D M C=\angle N C B
$$

$\therefore M O \| C B$ (corresponding angles are equal)
All 3 correct 2 marks some progress(relevant) I mark
$B C$ i) All 3 red and I form G, y, w, B

$$
\text { ie. }{ }^{4} c_{1}=4 \text { ways. }
$$

ii) 4 cases to consider

3 red 1 where $=4$ ways
$\left[2\right.$ pairs $\quad={ }^{4} C_{2}=6$ ways
\checkmark Impair, i differed $={ }^{4} C_{1} \times{ }^{4} C_{2}=4 \times 6=24$ ways
hall different $={ }^{5} C_{4}=5$ ways
Total $=39$ ways
(i) for any of these cases
$13 d$

$$
\tan \alpha=\frac{C x}{A x}=\frac{h}{A x} \quad \tan \beta=\frac{c x}{B x}=\frac{h}{B X}
$$

$A x=h \cot \alpha \quad \& \quad B x=h \cot \beta$ (1) either $X O^{2}=A x^{2}-5^{2}$ \& $X O^{2}=B X^{2}-3^{2}$

$$
\therefore \quad A x^{2}-25=3 x^{2}-9
$$

$\alpha^{2} \cot ^{2} \alpha-\alpha^{2} \cot ^{2} \beta=16$
(1) for equating the
$h^{2}\left(\cot ^{2} \alpha-\cot ^{2} \phi\right)=16$

$$
\begin{aligned}
& \alpha^{2}=\frac{16}{\cot ^{2} \alpha-\cot ^{2} \beta} \\
& \therefore \alpha=\frac{4}{\sqrt{\cot ^{2} \alpha-\cot ^{2} \beta}}
\end{aligned}
$$

(1) final sobidaren

