

BAULKHAM HILLS HIGH SCHOOL

2015 YEAR 11 YEARLY EXAMINATION

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- In Questions 11–14, show relevant mathematical reasoning and/or calculations
- Marks may be deducted for careless or badly arranged work

Total marks – 70 Exam consists of 9 pages.

This paper consists of TWO sections.

Section 1 – **Page 2-4** (10 marks)

- Attempt Question 1-10
- Allow about 15 minutes for this section

Section II - Pages 5-9 (60 marks)

- Attempt questions 11-14
- Allow about **1 hours and 45** minutes for this section

Answer the following in the booklet provided.

1 AP is a diameter of the circle

If $\angle APB = 40^{\circ}$, then $\angle PAB$ is

- (A) 40°
- (B) 50°
- (C) 60°
- (D) not enough information
- 2 What is another expression for cos(x + y)?
 - (A) $\cos x \cos y \sin x \sin y$
 - (B) $\cos x \cos y + \sin x \sin y$
 - (C) $\sin x \cos y \cos x \sin y$
 - (D) $\sin x \cos y + \cos x \sin y$
- 3 What is the acute angle to the nearest degree between the lines y = 1 3x and 4x 6y 5 = 0?
 - (A) 15°
 - (B) 38°
 - (C) 52°
 - (D) 75°
- 4 nC_r is equal to:
 - (A) $(n-r)! {}^{n}P_{r}$
 - (B) $\frac{n_{P_r}}{(n-r)!}$
 - (C) $r! {}^nP_r$
 - (D) $\frac{n_{P_r}}{r!}$

5

Let $t = \tan \frac{\theta}{2}$ where $0^{\circ} < \theta < 180^{\circ}$

Which of the following gives the correct expression for $2 \sin \theta + 2 \cos \theta$?

- (A) $\frac{1+2t-t^2}{1+t^2}$
- (B) $\frac{2+2t-2t^2}{1+t^2}$
- (C) $\frac{2+4t-2t^2}{1+t^2}$
- (D) $\frac{2-4t+2t^2}{1-t^2}$

The coordinates of a point that divides the interval A(-2,7) to B(12,0) externally in the ratio 4:3 is 6

- (A) (-44, -28)
- (B) (44, -28)
- (C) (54, -21)
- (D) (54,21)
- 7

If $\cos \theta = -\frac{3}{5}$ and $0^{\circ} < \theta < 180^{\circ}$ then $\tan \frac{\theta}{2}$ is equal to:

- (A) $-\frac{1}{3}$ or 3
- (B) $\frac{1}{3}$ or 3
- (C) -2
- (D) 2
- 8

The expression $\sin x - \sqrt{3}\cos x$ can be written in the form $2\sin(x+\beta)$. The value of β is

- (A) 30°
- (B) -30°
- (C) 60°
- (D) -60°

9 The line TA is a tangent to the circle at A, and TB is a secant meeting the circle at B and C.

Given that TA = 6, CB = 9 and TC = x, what is the value of x?

- (A) 2
- (B) 3
- (C) 12
- (D) 18
- A point moves in the xy-plane such that $P(\tan \theta, \cot \theta)$ is its parametric presentation with parameter θ , where θ is any real number. The locus of P is then a
 - (A) Parabola
 - (B) Circle
 - (C) Hyperbola
 - (D) Straight line

End of Section I

Section II – Extended Response All necessary working should be shown in every question.

Ou	estion 11 (15 marks) - Start on the appropriate page in your answer booklet	Marks
a)	Solve $\frac{2x-3}{x-2} \ge 1$	3
b)	The acute angle between the lines $y=(m+3)x$ and $y=mx$ is 45° (i) Show that $\left \frac{3}{m^2+3m+1}\right =1$	1
	(ii) Hence find all the values of <i>m</i> .	2
c)	In the diagram, PQ is parallel to ST and O is the centre of the circle. $ \angle PQR = 80^{\circ} \text{ and } \angle POS = 110^{\circ} $ Not to scale $ \text{Copy the diagram into your booklet.} $ Find the value of $\angle PRQ$ giving reasons.	3
d)	Solve $5\cos\theta + 12\sin\theta - 13 = 0$ over the domain $0^{\circ} \le \theta \le 360^{\circ}$.	3
e)	How many distinct permutations of the letters of the word <i>D I V I D E</i> are possible in a straight line when the word begins and ends with the letter <i>D</i> ?	1
f)	If $tan(A + B) = x$ and $tan B = \frac{1}{3}$, express $tan A$ in terms of x .	2
	End of Question 11	

Que	estion 12 (15 marks) - Start on the appropriate page in your answer booklet	Marks
a)	Simplify $\frac{4^n + 8(2^n)}{2^{n-1}}$	2
b)	From a group of 7 girls and 6 boys, 3 girls and 2 boys are chosen.(i) How many different groups of 5 are possible?(ii) If the group of 5 stand in a line, how many arrangements are possible if the boys stand together?	2 2
c)	In the diagram, two circles intersect at <i>A</i> and <i>B</i> . <i>CAD</i> , <i>CBE</i> , <i>CPK</i> and <i>DKE</i> are straight lines. Not to Scale Draw the diagram into your answer booklet.	
	(i) Explain why $\angle APC = \angle ABC$. (ii) Hence, or otherwise, show that $ADKP$ is a cyclic quadrilateral.	1 2
d)	 (i) Sketch the graph of y = 1 - 2x . (ii) Hence or otherwise solve 1 - 2x ≤ x. 	2 2
e)	Prove that $\cos 2\theta + \tan \theta \sin 2\theta = 1$.	2
	End of Question 12	

Que	estion 13 (15 marks) - Start on the appropriate page in your answer booklet	Marks
a)	4 men, 2 women and a child sit at a round table.	
	In how many ways can these 7 people be arranged	
	(i) Without restrictions.	1
	(ii) If the child is seated between the two men.	1
b)	Consider the function $f(x) = \frac{x}{4-x^2}$	
	(i) State the domain of the function.	1
	(ii) Show that the function is an odd function.	2 2
	(iii) Show that the function is increasing throughout its domain.	1
	(iv) Evaluate $\lim_{x \to \infty} f(x)$.	2
	(v) Using the above information sketch the function $y = f(x)$ showing any essential features.	2
c)	The diagram below shows the parabola $x^2 = 4ay$ and the points $P(2ap, ap^2)$ and $Q(2aq, aq^2)$ $x^2 = 4ay$ $Q(2aq, aq^2)$ $Q(2aq, aq^2)$ x	
	(i) Show that the equation of the chord PQ is $2y = (p+q)x - 2apq$.	2
	(ii) The line joining P and Q passes through the point $(0, -2a)$. Show that $pq = 2$.	1
	(iii) The normals to the parabola $x^2 = 4ay$ at points P and Q intersect at K . The coordinates of K are $\left(-apq(p+q), a(p^2+q^2+pq+2)\right)$ (DO NOT PROVE THIS)	2
	Find the equation of the locus of K .	
	End of Question 13	

Question 14 (15 marks) - Start on the appropriate page in your answer booklet

Simplify fully: a)

3

$$\cos^2 A + \cos^2(120^\circ + A) + \cos^2(120^\circ - A).$$

In the diagram, AB is the diameter of the circle centre O, and BC is a tangent at B. b) The line AD intersects the circle at E and BC at D. The tangent to the circle at E intersects BC at F. Let $\angle EBF = \theta$.

Prove $\angle FED = 90^{\circ} - \theta$. (i)

2

Prove BF = FD. (ii)

(i)

2

In the diagram, $T(2at, at^2)$ is a point on the parabola $x^2 = 4ay$ c)

Show that the normal to the parabola at T has equation $x + ty = 2at + at^3$.

2

(ii)

2

This normal cuts the x and y axes at X and Y respectively. Find the ratio of $\frac{TX}{TY}$ in simplest terms.

d) CD is a vertical pole of height 1 metre that stands with its base C on horizontal ground. A is a point due South of C such that the angle of elevation of D from A is A is a point due East of A such that the angle of elevation of A from A is A is the midpoint of A.

(i) Show that $AB = \csc \alpha$.

2

(ii) Find an expression for CM in terms of $\csc \alpha$.

2

End of Examination

13 a	For which x- values on the curve $y = \frac{x}{x+1}$ is the curve increasing?	2
13 b	(i) If $a = \frac{15bx}{3b+5x}$ express x in terms of a and b	2
	Hence express $\sqrt{\frac{3b-a}{5x-a}}$ in terms of a and b	2
	(ii)	

multiple cl	raice
	na semiciale)
2. A	1
3.D.	$\tan \theta = \frac{M_1 - M_2}{1 + M_1 M_2}$
	$= \frac{-3 - \frac{2}{3}}{1 + -3 \times \frac{2}{3}}$
	1+-3×23
	D = 75° (nearest degree)
4 D.	
5,C	$\frac{2 \times 2^{\pm}}{1 + t^{2}} + \frac{2 \times (1 - t^{2})}{1 + t^{2}} = \frac{4t + 2 - 2t^{2}}{1 + t^{2}}$
	1+t ² 1+t ²
b.C.	$\frac{m_{22}-n_{21}}{m-n}$ $\frac{m_{22}-n_{21}}{m-n}$ $m!n=4:3$
	$(442-3x^{-2})$ $(4x0-2x7)$ $(54-71)$
6 n	2 2 tan 2 2 tan 2 2
()	3 4 2 time
(thower missing)	$\frac{4}{3} = \frac{2 \tan \frac{\Phi}{2}}{1 - \tan^2 \frac{\Phi}{2}}$
	(2tan = +1)(tan = -2)=0:
•	$tan^{\frac{1}{2}} = 2$
8. D.	tan B = 53
	B = 60. but (x+16) should be (x-1)
	b = -60
9. , \ B.	AT'=TB×TC
	$b^2 = (x+9)x$
10 .c.	$x = \tan \sigma$ $y = \cot \alpha$
·	$x = \tan \phi$ $y = \cot \phi$ $= \frac{1}{\tan \phi}$
	= 1/2
	. · . ×y = 1

Ovestion 11.	<u> </u>
a) $\frac{2x-3}{x-2} \ge 1$	
2x-3-z+2 x-2 20	Dédentifies x = 2,
	O correct answer
$\frac{(2\ell-2)^{\frac{1}{2}} \cdot \frac{(2\ell-1)}{2}}{2\ell-2} \geq O \times (2\ell-2)^{\frac{1}{2}}$	D x≠2.
2	0 ~71.
(pc-2)(x-1) ≥0	
x ≤ 1 or x ≥ 2 . but	x + 2 :. x = 1 x > 2
b) l,: m,= m+3 l_: m_= n	1
$i) \qquad +an \ \Theta = \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
1 + m, m 2	
$tan 45 = \frac{m+3-m}{1+(m+3)m}$	(1) should have
1+(m+3)m	either - 1st 2 lines
$= \frac{3}{m+3m+1}$	
m+3m+1	
iij two cases .	D for solving
$m^2 + 3m + 1 = 3$	m +3m +1 = -3 equations
$m^{2}+3m-2=0$	$m^{2}+3m+4=0$ $m=\frac{-3\pm\sqrt{9-16}}{m}$
$m^2 + 3m - 2 = 0$ $m = \frac{-3 \pm \sqrt{9 + 8}}{2}$	$m = \frac{-3 \pm \sqrt{9 - 16}}{2}$
	no soln
$\frac{-3\pm\sqrt{17}}{2}$ the solu	3 marts)
c) < PRS = \(\frac{1}{2} \) 4POS (Lat centre +	Will Lat circumpture on suman
CART=CPAR (alternate Ls	·
= 80°	<u> </u>
LPRQ + LPRS + L QRT = 180° (
	-(55+80)
= 45	

10 martes

d) 5 cos 0 + 12 sin 0 = 13 0 = 0 = 360° (3marks)
$5 \cos \theta + 12 \sin \theta = R \cos (\theta - \beta)$
where R: R R = V144+25 + 4m/3 = 12
$\beta = 6/23$ (1)
state if correspond (
0-67°23'= 0 360 = nat in range
$\theta = 67^{\circ} 28'$
t method:
$\frac{5(1-t^{2})+12\times2t}{1+t^{2}}=13 \text{ where } t=\tan\frac{\theta}{2}.$
1+2- 1+2-
5-5t +24t = 13+13t
18t-24t +8 =0
$9t^2-12t+4=0$
$(3 \pm -2)^2 = 0$
$t = \frac{2}{3} + \tan \frac{\theta}{2} = 23$
± =33.69
$\phi = 67^{\circ}23'$
test 1806
415 = 5 cos 180 + 12 SIN 1808
2 -5
$+13$ no Soln $\theta = 67^{\circ}23'$.
· · ·
· · ·

You may ask for extra writing paper if you need more space to answer question 11

	• -		•	
<u> </u>		·- 		
e DIVIDE				
	7	4.1		
_ D D	ino. of way	0 = 4:		
		2:		
	1.5		-	
		= 12	— (I)——	
+ An (1 14) -	x tan B=	1		
· 1 (4 +b) -	tan 15 =	3		
tan (A	$+6) = \frac{\tan A + \lambda}{1 - \tan A}$	lan b		
	1 - tan	A tans		-
	tan A + 3	-		
	$x = \frac{\tan 4 + 3}{1 - 3 \tan 4}$	<u>. </u>		
	1 - 3 tan	nA.		
	. 1			_
3x-	etanA = 3 ta			
	3	3		
3 <i>x</i> _	-1 = 3 ta	n 4 + x tan	A	
ta	$nA = \frac{3z}{3+}$	- 1		
	3+.	Z	·(/)	- 1
				.1
			-: /	-
			/15	
	•			
				\dashv
	•			
				_
				\dashv
				_
				-
				- 1

Question 12.	•
	\bigcirc
a) $\frac{4^n + 8(2^n)}{2^{n-1}} = \frac{2^n + 2^3 \cdot 2^n}{2^n \cdot 2^{n-1}}$	
2"(2"+23)	
$=\frac{2^{2^{n}}(2^{n}+2^{3})}{2^{n}\cdot 2^{n}}$	
	211
= 2 +2 or 2	+16.
76.66	Devousing
)i)no. of ways = 7C3 × 6C1	D recognising
	O answer
i) boys together = 2!	
no. of ways in a line = 4: x2!	1) porting borp togethe
= 48	togethe
	Danswer.
) <u> </u>	ZAPC = ZABC
	(Ls at circumference equal.
P	on same arc/ chard)
	cyclic quad ADEB
2	ADE = LABC (enternal Legal
	interior apposite ()
but 2	LABC = LAPC (parti)
and <	APC = LADE = LABC
	ernal L equals interior
	·
. ,	2 34)2(
· · ·	ADKP is a cylic quadrilateral
:	

A 1		
d.) \	1	1) correct shape
(i)	in solutions.	
	in solutions.	() axes labelled . Intercepts shown.
	°r	
/.		
ii) 1-2x = x	-1+2× 4×	
1 43x	-1 \(\sim - \chi \)	
エンコ	2641	1 correct values
3	£x £ 1	
		1) put together in one inequality
e) Prove: cos20+tan	esin20 =1	• •
LHS = 2 cos 0 - 1 + SI		(D)
= 2 00 0+2512	9-1	
= 2 (cos o+sinte		. 0
= 1		
= R Hs.		
		/_
		//5
		· · · · · · · · · · · · · · · · · · ·
·		
		·
		'5

You may ask for extra writing paper if you need more space to answer question 12

a) 4 men 2 women ichild = 7
i) no. of ways = 6!
= 720
ii) no. of warp = "C2 × 2! × 4!
= 288.
b) $f(x) = \frac{x}{4-x}$
is D: all real x , $x \neq \pm 2$
2) [5. 600.1660 2, 50 7 2
ii) $f(x) = \frac{\chi}{4-x^2}$
C(2) -x (1) Should show
$f(-x) = \frac{-x}{4 - (-x)}$ (1) should show show
$= \frac{x}{4-x^2} = -f(x) = odd \text{ function. } O \text{ concluding.}$
$= 4 - x^{2} - \frac{1}{2}$
$f(x) = \frac{x}{4-x}$
$f'(x) = \frac{(4-x^2)^{x} - x(-2x)}{(x-x^2)^{2}}$ $f'(x)$
(tat)
= 4+x as numerator
= 4+x as numerator (4-x) and denomintor are 70 for all values of x
· · · · · · · · · · · · · · · · · · ·
for its domains.
W)
$\lim_{x \to \infty} \frac{x}{4 - x^{2}} = \lim_{x \to \infty} \frac{x}{4 - x^{2}}$
x x
$= \lim_{\chi \to \infty} \frac{1}{\chi}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
= 0 : curve approaches o as x → 0


```
a) co A + co (120°+A) + co (120°-A)
  = cos A + 1 (cos 2 (120+A)+1) + 1 cos (2 (120-A) +1
  = coo A + 1 coo (240 + 2A) + 1 + 1 coo (240 - 2A) + 1
 = 1 + coo A + = (00240 con 2A - sin 240 sin 2A)
             + 1 (co240 co2A + sin240 sin2A)
                                          (con 240 = - 1)
 = 1 + cos A - \frac{1}{2}(2cos A - 1)
                                         2 working towards ...
 = 1 + cos A - cos A + 1
 = ==
                                          many methods
                                      1) final answer
                                                         (2)
                     i) AIM: prove LFED = 90 - 8.
                        CAEB = 90 (Lina semicircle)
                          EF = FB (tangents from an external
                 90-0
                                   point are equal)
                           .. LFBE = LFEB (Ls opposite
                                      equal sides are equal)
                              AÊB+ BÊF+FÊD=180 (L sum
                                   CFED = 180-90-0
                                         = 90-0
LipProve: BF = FD.
                 (external L of & BEF equal to interior
                     opposite Ls
  then FDE = 180-EFD-FED (LSUND)
            =180 - (90-0) -20
```

= 90-8

FÂE = FÊD	
and FE = FD (sides opposite equ	al Ls are equal)
but BF-FE (proved above)	
BF = FD.	
$(c.i)$ $x^2 = 4ay$ at $(2at, at)$	
$y = \frac{\lambda}{4\alpha}$ $dy z$	Destablishina
$\frac{dy}{dx} = \frac{1}{2a}$	() establishing gradient
$\frac{d\vec{n} = 2a}{at \ x = dat} m_1 = -\frac{1}{m_1}$ $= -\frac{1}{m_1}$ $= -\frac{1}{m_1}$	<u> </u>
	
normal: $y-y_1=m(x-x_1)$	
$y-at = -\frac{1}{k}(n-2at)$	1) this line.
$ty-at^3=-x+2at$	
$x + t y = 2at + at^3$	
li) at X y=0 x = 2at + at3	(2at +at3, 0)
at Y x =0 y=2a+at	(0,2atat)
length TY = 1(2-21) + (42-41)	
= (2at)" + (at - 2a -at")"	
= \4a + 4a	
= 2a (t+1	
length TX = \kat+at3-2at) + (0-at)2
$= \sqrt{a^2 t^4 + a^2 t^4}$	
	Dastind Sinto
= at \t+1	1) method Carstance
· 1× at 1+1	
Ty 20 12+1	
= = ===================================	0 ±
= 2	<u>(1) 2 · </u>

d) in DADC	in ABDC	Destablish
	$tand = \frac{DC}{CB}$	1 AB = 1+coto
$AC = 1$ $CB = \frac{1}{tand} = Cat \alpha$.		
i) now ACB = 90°		
in A ACB		
AC+CB = AB (pythagoras' theorem)		
:. AB = 1+ cot a		
= cosec d		
AB = cosec &.		
ii) since ACB =90°		1) for valid
and m is the mid		1) for valid method.
then ACB is the Lina semiciale through		
A, C, B with diameter AB.		
CM = = 1 A	В	
= = 1	sec &.	Dicosec &.
0/2 for assur	uning a = 45 and]	/15
L'achieving	correct answer	