AP2_CTHS_2000

Question 1

a) Solve $|x-3|=2 x+1$
b) Solve and graph on the number line $\frac{t^{2}+4}{t} \geq 2 t$
c) The point R divides the interval PQ externally in the ratio 3 $3: 2$. If P is $(1,5)$ and $Q(6,20)$:
(i) find R
(ii) In what ratio does Q divide PR?
d) Find the acute angle between the lines $2 x+3 y-1=0$ and $x+y-4=0$ to the nearest degree.
e) Expand and simplify $(2+3 x)^{4}$

Question 2
a) Find the coordinates of the point where the normal the curve $y=3 x^{2}+x-1$ at $(1,3)$ cuts the x-axis.
b) Determine the value of the constant a if the tangent to the curve $y=\frac{a}{x+1}$ has a gradient of $-1 / 2$ when $x=1$.
c) Write the coordinates of the vertex, focus, directrix and axis of symmetry of $(x-3)^{2}=24(y-1)$.
d) Find the equation of the locus of the point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ which moves in such a way that its distance from the point $\mathrm{A}(-2,-2)$ is twice its distance from the point $\mathrm{B}(1,-1)$. Describe this locus geometrically.

Question 3

a) Simplify $\frac{\sin \left(90-x^{\circ}\right)}{\cos \left(180-x^{\circ}\right)}$
b) Solve $2 \sin ^{2} x-\sin x=0$ for $0^{\circ} \leq x \leq 360^{\circ} \quad 2$
c) Prove that $\tan \mathrm{A} \sin \mathrm{A}+\cos \mathrm{A}=\sec \mathrm{A}$
d) A ship is 3500 due south of a lighthouse and travelling on a bearing of 325°. What is the closest distance the ship comes to the lighthouse to the nearest metre?
e) The elevation of a hill from a place P due east of it is 47°, and at a 4 place Q due south of P the elevation is 33°. If the distance from P to Q is 400 m , find the height of the hill to the nearest metre.

Question 4
a) For what values of k does the equation $\mathrm{x}-\frac{k}{4 x}=k+2$ have real roots?
b) Solve $x^{4}+x^{2}-12=0$.
c) If $x^{2}-4=A(x+1)(x-2)+B x+C$. Find A, B and C.
d) Show that $12+4 x-x^{2}$ can never be greater than 16 for all real values of x.
e) For what values of k will the equation $\mathrm{x}^{2}-(\mathrm{k}+4) \mathrm{x}+(7+\mathrm{k})=0$ have one root as the reciprocal of the other?

Question 5
a) Find $\angle \mathrm{BAC}$ with reasons:

b) Triangle $A B C$ has a right angle at B. D is the midpoint of $A B$.
E lies on AC, DE is parallel to BC .

(i) Prove triangle AED is congruent to triangle BED.
(ii) Prove $\mathrm{BE}=\mathrm{EC}$
c) Prove triangle ABD is similar to triangle ADC .

d) If the interior angle of a rectangular polygon is k times as large as its exterior angles. Prove that the polygons has $2(\mathrm{k}+1)$ sides.

1. a) $\mathrm{x}=\frac{2}{3}$
b) $t \leq-2$ or $0<t \leq 2$
c) (i) $(16,50)$
(ii) $1: 2$
d) 79°
e) $16+96 x+216 x^{2}+216 x^{3}+81 x^{4}$
2. (a) $(22,0)$
b) $\mathrm{a}=2$
c) $\mathrm{V}:(3,1)$

F: $(3,7)$
D: $y=-5$
Axis $\mathrm{x}=3$
d) $(x-2)^{2}+(y+2)^{2}=8$

Centre of the circle $(2,-2)$
And radius $\sqrt{8}$
3. a) -1
b) $\mathrm{x}=0^{\circ}, 30^{\circ}, 150^{\circ}, 180^{\circ}, 360^{\circ}$
d) 2008 m
e) 326 m
4. a) $\mathrm{k} \leq-4$ or $\mathrm{k} \geq-1$
b) $x= \pm 2$
c) $\mathrm{A}=1, \mathrm{~B}=1$ and $\mathrm{C}=-2$
d) 16
e) $k=-6$
5. a) 51°

