Question 1 \therefore Solve $ \mathbf{r} = 3 = 2\mathbf{r} + 1$	2
a) Solve $ x - 5 = 2x + 1$	2
b) Solve and graph on the number line $\frac{t + 4}{t} \ge 2t$	3
 c) The point R divides the interval PQ externally in the ratio 3 : 2. If P is (1,5) and Q(6,20): (i) find R (ii) In what ratio does Q divide PR? 	3
d) Find the acute angle between the lines $2x + 3y - 1 = 0$ and $x+y - 4 = 0$ to the nearest degree.	2
e) Expand and simplify $(2+3x)^4$	2
Question 2 a) Find the coordinates of the point where the normal t the curve $y=3x^2 + x - 1$ at (1,3) cuts the x-axis.	3
b) Determine the value of the constant <i>a</i> if the tangent to the curve $y = \frac{a}{x+1}$ has a gradient of $-\frac{1}{2}$ when x = 1.	2
c) Write the coordinates of the vertex, focus, directrix and axis of symmetry of $(x-3)^2 = 24(y-1)$.	4
d) Find the equation of the locus of the point $P(x,y)$ which moves in such a way that its distance from the point $A(-2,-2)$ is twice its distance from the point $B(1,-1)$. Describe this locus geometrically.	3
Question 3	
a) Simplify $\frac{\sin(90 - x^{\circ})}{\cos(180 - x^{\circ})}$	1
b) Solve $2\sin^2 x - \sin x = 0$ for $0^\circ \le x \le 360^\circ$	2
c) Prove that $tanA sinA + cos A = sec A$	3
d) A ship is 3500 due south of a lighthouse and travelling on a bearing of 325°. What is the closest distance the ship comes to the lighthouse	2
to the nearest metre?	2
e) The elevation of a hill from a place P due east of it is 47°, and at a place Q due south of P the elevation is 33°. If the distance from P to Q is 400m, find the height of the hill to the nearest metre.	4

Question 4

a) For what values of k does the equation $x - \frac{k}{4x} = k + 2$ have real roots?	4
b) Solve $x^4 + x^2 - 12 = 0$.	3
c) If $x^2 - 4 = A(x+1)(x-2)+Bx + C$. Find A, B and C.	3
d) Show that $12 + 4x - x^2$ can never be greater than 16 for all real values of x.	2
e) For what values of k will the equation $x^2 - (k+4)x + (7+k) = 0$	

have one root as the reciprocal of the other?

Question 5

a) Find \angle BAC with reasons:

b) Triangle ABC has a right angle at B. D is the midpoint of AB. E lies on AC, DE is parallel to BC.

(i) Prove triangle AED is congruent to triangle BED.

(ii) Prove BE = EC

c) Prove triangle ABD is similar to triangle ADC.

d) If the interior angle of a rectangular polygon is k times as large as its exterior angles. Prove that the polygons has 2(k+1) sides.

3

3

2

5

1. a) $x = \frac{2}{2}$	4. a) $k \le -4$ or $k \ge -1$
b) $t \le -2$ or $0 < t \le 2$	b) $x = \pm 2$
c) (i) (16, 50) (ii) 1:2	c) $A = 1$, $B = 1$ and $C = -2$
	d) 16
d) 79°	e) $k = -6$
e) $16 + 96x + 216x^2 + 216x^3 + 81x^4$	5. a) 51°
2. (a) (22, 0) b) $a = 2$	
c) V: (3,1) F: (3,7) D: y = -5 Axis x = 3	
d) $(x-2)^2 + (y+2)^2 = 8$	
Centre of the circle $(2, -2)$ And radius $\sqrt{8}$	
3. a) -1 b) $x = 0^{\circ}$, 30° , 150° , 180° , 360° d) $2008m$ e) $326m$	