AP2_CTHS_2001

Question 1

a)	For the parabola $y=(x+2)^2-5$, state the vertex and axis of symmetry.	2
b)	The line <i>l</i> has an x-intercept of -6 and y-intercept of 5. The line, <i>k</i> has an x-intercept of 3 and y-intercept of 4. Find the acute angle between the lines giving your answer to nearest minute.	3

c) (i) On the same axes, sketch the curves of $y = x^2$ and y = |x| 2

(ii) Hence, or otherwise, solve
$$x^2 < |x|$$
 1

O is the centre of a circle of radius 6cm, PQ is a tangent and PRS is a secant. PO = 10cm, PR=6cm. Find SR.

Question 2

- a) The roots of the quadratic equation $x^2 + 4x + 2 = 0$ are α and β .
 - (i) Find $(\alpha 2)(\beta 2)$. 2
 - (ii) Find $\alpha^{2+}\beta^2$ 2

(iii) Hence, show that the value of
$$\frac{1}{\alpha^3} + \frac{1}{\beta^3} = -5$$
 2

b) If A is acute, B is obtuse and
$$\cos A = \frac{5}{13}$$
 and $\sin B = \frac{3}{5}$, 2

find cosecAtanB.

c) Find the equation of the tangent to the curve $y = 2x\sqrt{x+1}$ 4 at the point where x = 3.

Question 3

a) A is the point (5,0) and O is the origin. Given that the point B(x,y) lies on the line y = 1 - 3x and that OB is perpendicular to AB, find the coordinates of B.

4

b) Farmer Joe decided to make a rectangular chicken run using an existing wall as one side.

He has 18m of wire netting to use.

- (i) Show that y = 18 2x
- (ii) Show that the area, A m^2 , of the run is given by A = $18x - 2x^2$
- (iii) Find the maximum possible area of the run. (Use quadratic theory only)
- c) For what values of k, does the quadratic equation $kx^2 + 4x + k + 3 = 0$, have real roots?

Question 4

a)
$$y=x^2 + bx + c$$

(i) Find $\frac{dy}{dx}$ 1

(ii) The line x+7y - 15 = 0 is a normal to the curve $y=x^2+bx+c$ at the point (1,2). Find b and c.

Copy this diagram on to your answer sheet. In the diagram PAC and PBC are straight lines. Prove that DC is parallel to the tangent P.

c) Solve $2\cos^2 2\theta - \cos 2\theta - 1 = 0$ for $0 \le \theta \le 360$.

Question 5

3

4

1

1

3

3

In the diagram, PQ and SR are parallel railings which are 3			
Metres apart. The points P and Q are fixed 4m apart on the			
Lower railing. Two crossbars PR and QS intersect at T as			
shown in the diagram. The line perpendicular to PQ			
intersects PQ at U and SR at V. the length of UT is y metres.			
(i) Show that \triangle SRT is similar to \triangle QPT.	3		
SR VT			
(11) Hence explain why $\overline{PO} = \overline{UT}$	1		
12			
(iii) Show that SR = $\frac{12}{2}$ - 4	1		
\mathcal{Y}			
(iv) Hence, show that the total area, A, of ΔQPT	2		
and ADTS is $A = 4x + 12 + \frac{18}{2}$			
and $\Delta K I S IS A - 4y - 12 + y$			
b) If $a^x = 7$ and $a^{x+3} = 56$, find the values of a^{x-3}	2		
c) A and B have coordinates $(-1, 7)$ and $(5, -2)$ respectively.			
P divides the interval AB in the ratio k: 1			
(i) Write down the coordinates of P in terms of k .	1		
(ii) Hence find AP : PB when P lies on the line			
5x - 4y - 1 = 0.			
Ouestion 6			
a)(i) Determine whether $f(x) = x^2 - 2x + 2$ is positive	2		
definite, negative definite or neither.			
······································			
$r^2 - 2r + 2$			
(ii) Hence, solve $\frac{x-2x+2}{2}$	2		

2

1

. . .

- (ii) Hence, solve $\frac{x^2 2x + 2}{3 x}$
- b) Two observers P and Q are 150m apart. The observer at P finds the bearing of Q to be 087°T and a distant tower AB, to have a bearing of 006°T. The observer at Q finds the bearing of the tower to be 357°T.

(i) Copy the diagram onto your answer sheet and add any given information.

(ii) Show that BQ =
$$\frac{150 \sin 81^{\circ}}{\sin 9^{\circ}}$$
 2

- (iii) The observer at Q finds the angle of elevation of the top of the tower to be 7°. Find the height of the tower correct to the nearest metre.
- c) The line 3x + 4y + 7 = 0 is a tangent to a circle with centre (2,1). 3 Find the equation of the circle.

Question 7	
In the diagram, Q is the point (-1,0), R is the point (1,0), and P is another point on the circle with centre O and radius 1 unit. Let $\angle POR = \alpha$ and $\angle PQR = \beta$, and let $\tan\beta = m$.	
(i) Explain why $\triangle OPQ$ is isosceles, and hence deduce that $\alpha = \beta$	2
(ii) Find the equation of the line PQ.	1
(iii) Show that the coordinates of P and Q are solutions of the equation $(1+m^2)x^2 + 2m^2x + m^2 - 1 = 0.$	2
(iv) Using this equation, find the coordinates of P in terms of <i>m</i>.	3
(v) Hence deduce that $\tan 2\beta = \frac{2\tan\beta}{1-\tan^2\beta}$	
(vi) Hence, using part(v) only, show that $\tan 15^\circ = 2 - \sqrt{3}$	2

2

Question 1
a)
$$y=(x+2)^2 - 5$$

Vertex= $(-2, -5)$
Axis of symmetry $x = -2$
b) $m_i = \frac{5}{6}$
 $tan \theta = \left| \frac{m_k - m_i}{1 + m_k m_i} \right| = \left| \frac{-4}{3} - \frac{5}{6} \right| = 19 \frac{1}{2}$
 $\angle \theta = 87^{\circ}4^{\circ}$
c)(i)
 $y = \frac{1}{1 + \frac{-4}{3} \times \frac{5}{6}} \right| = 19 \frac{1}{2}$
(ii) For $x^2 < |x|$,
 $-1 < x < 0$ or $0 < x < 1$
d)
 $\frac{2POQ = 90^{\circ} \text{ (tangent is perpendicular to radius)}}{10^2 = PQ^2 + 6^2 (Pythag. Theorem)}$
 $\therefore PQ = 8cm$
PQ² = SP × PR (Square of tangent = product of intercept of secants)
 $8^2 = (SR + 6) \times 6$
 $SR = 4\frac{2}{3}$
Question 2
a) $x^2 + 4x + 2 = 0$
 $\alpha + \beta = -4$ and $\alpha\beta = 2$
(1) $(\alpha - 2)(\beta - 2) = \alpha\beta - 2(\alpha + \beta) + 4$
 $= 2 - 2 \times -4 + 4 = 14$

(ii)
$$\alpha^{2}+\beta^{2} = (\alpha+\beta)^{2}-2\alpha\beta$$

 $= (-4)^{2}-2\times 2 = 12$
(iii) $\frac{1}{\alpha^{3}}+\frac{1}{\beta^{3}} = \frac{\alpha^{3}+\beta^{3}}{\alpha^{3}\beta^{3}}$
 $= \frac{(\alpha+\beta)^{3}-(\alpha^{2}+\beta^{2}-\alpha\beta)}{\alpha^{3}\beta^{3}}$
 $= \frac{(-4)^{3}-(12-2)}{2^{3}} = -5$
b)
 $12 \underbrace{13}_{5}A$ $3 \underbrace{14}_{-4}B$
Cosec A tan B = $\frac{13}{12} \times \frac{3}{-4} = \frac{-13}{16}$

c)
$$y = 2x\sqrt{x+1}$$

 $\frac{dy}{dx} = 2x(x+1)^{\frac{1}{2}}$
 $= 2(x+1)^{\frac{1}{2}} + 2x \times \frac{1}{2}(x+1)^{-\frac{1}{2}}$
 $= 2\sqrt{x+1} + \frac{x}{\sqrt{x+1}}$
coordinates of tangents at x = 3

$$m_{t} = 2\sqrt{4} + \frac{3}{\sqrt{3+1}} = \frac{11}{2}$$

hen x = 3, y = 2 × 3 + $\sqrt{4}$ = 12

when
$$x = 3$$
, $y = 2 \times 3 + \sqrt{4} = 1$

Equation of tangent

c)

$$y - 12 = \frac{11}{2}(x - 3)$$

11x - 2y - 9 = 0

$$m_{OB} = \frac{y}{x} \qquad m_{AB} = \frac{y - 0}{x - 5}$$

$$x$$
as OB \perp AB
$$\frac{y}{x} \times \frac{y}{x-5} = -1$$

b) But B(x, y) lies on y = 1 - 3x $\therefore (1-3x)^2 = -x^2 + 5x$ $1 - 6x + 9x^2 = -x^2 + 5x$ $10x^2 - 11x + 1 = 0$ (10x - 1)(x - 1) = 0 $x = \frac{1}{10}$ or 1 $\therefore B(\frac{1}{10}, \frac{7}{10}) \text{ or } (1, -2)$ Let $\angle EPB = x^{\circ}$ 1. $\angle EPB = \angle PAB = x^{\circ}$ (\angle bet. Tangent and chord = b)(i) perimeter = 2x + y \angle in alternate segment) ie. 2x + y = 182. $\angle PAB = \angle BDC = x^{\circ}$ (Ext. \angle of a cyclic quadrilateral hence, y = 18 - 2x= opp. Interior angle $\therefore \angle EPB = \angle BDC = x^{\circ}$ (Alternate angles) (ii) Area A = xy∴ EP ∥CD = x(18 - 2x)ie. tangent at P is parallel to CD. $A = 18x - 2x^{2}$ (iii) As this is a quadratic function, a = -2 < 0c) $2\cos^2 2\theta - \cos 2\theta - 1 = 0$ for $0 \le \theta \le 360$. concave down. $2\cos^2 2\theta - \cos 2\theta - 1 = 0$ Hence, the maximum value will exist. $(2\cos 2\theta + 1)(\cos 2\theta - 1) = 0$ Axis of symmetry $x = \frac{-b}{2a} = \frac{-(-18)}{2(-2)} = \frac{9}{2}$ \therefore Cos2 $\theta = -\frac{1}{2}$ or Cos2 $\theta = 1$ $\angle 2\theta = 120^{\circ}, 240^{\circ}, 480^{\circ}, 600^{\circ}$ or 0°, 360°, 720° $x = \frac{9}{2}$ $\therefore \theta = 60^{\circ}, 120^{\circ}, 240^{\circ}, 300^{\circ} \text{ or } 0^{\circ}, 180^{\circ}, 360^{\circ}$ $\therefore A = \frac{9}{2}(18 - 2 \times \frac{9}{2}) = 40\frac{1}{2}$ Question 5 a) (i) In Δ SRT and QPt, \therefore Maximum area = 40 $\frac{1}{2}$ m² 1. \angle STR = \angle PTQ (Vert. Opp. Angles) 2. $\angle VST = \angle TQP$ (alternate angles equal as SR || PQ) c) $kx^2 + 4x + k + 3 = 0$ $\therefore \Delta SRT \Delta QPT$ (equiangular) For real roots $\Delta \ge 0$ ie. $4^2 - 4 \times k \ (k+3) \ge 0$ $16 - 4k^2 - 12k \le 0$ (ii) $\frac{SR}{PO} = \frac{VT}{UT}$ (corresponding sides of similar triangles are $4k^2 + 12k - 16 \ge 0$ $k^2 + 3k - 4 \ge 0$ proportional. : heights are proportional) $(k+4)(k-1) \ge 0$ (iii) $\frac{SR}{4} = \frac{3-y}{y} = \frac{3}{y} - 1$ $-4 \leq x \leq 1$ Question 4 \therefore SR = $\frac{12}{v}$ - 4 a)(i) $\frac{dy}{dx} = 2x + b$ (iv) Area = $\Delta PTQ + \Delta RTS$ $= \frac{1}{2} \times 4 \times y + \frac{1}{2} \left(\frac{12}{v} - 4 \right) \left(3 - y \right)$ (ii) x + 7y - 15 = 0 $y = -\frac{1}{7}x + \frac{15}{7}$ $= 2y + (\frac{6}{y} - 2)(3 - y)$ $m_{line} = -\frac{1}{7} = m_{normal}$ $=4y-12+\frac{18}{v}$ $m_{tangent} = 7$ b) $a^{x} = 7$ $a^{x+3} = 56$ Gradient of tangent at $(1,2) = 2 \times 1 + b = 7$ $\therefore \frac{a^{x+3}}{a^x} = \frac{56}{7} = 8$ $\therefore b = 5$ (1,2) is on the curve. ie. $a^3 = 8 \Rightarrow a = 2$ $\therefore a^{x-3} = a^x \times a^{-3}$ So, $2 = 1^2 + 5 \times 1 + c$ $\therefore c = -4$ $= 7 \times 8^{-1} = \frac{7}{2}$

c) Perpendicular distance = $\left|\frac{3 \times 2 + 4 \times 1 + 7}{\sqrt{2^2 + 4}}\right| = \frac{17}{5}$ Cenre (2, 1):. Equation of the circle = $(x-2)^2 + (y-1)^2 = \left(\frac{17}{5}\right)^2$ Question 7 a) OP = OQ (equal radii) $\therefore \Delta OPQ$ is isosceles $\angle OPQ = \angle PQO = \beta$ (base angles equal as Δ is isosceles) So, $\alpha = \beta + \beta$ (ext. $\angle =$ sum of opp. Int. $\angle s$) $\alpha = 2\beta$ (angle at the centre = twice \angle at the circumference of arc PR) b) As PQ has slope $m_{PQ} = \tan \beta$, Q = (-1,0): equation is y - 0 = m(x+1)y = mx + mc) the x-value of P and Q are the x-values of the simultaneous equations. $x^2 + y^2 = 1$ (1) y = mx + m(2) So, $x^2 + (mx+m)^2 = 1$ $x^{2} + m^{2}x^{2} + 2m^{2}x + m^{2} = 1$ \Rightarrow (1+m²)x² + 2m²x + m²-1 = 0 d) the x-values of P is x_P . But x-value of Q is $x_0 = -1$ Solving (c) x = -1 or $\frac{1 - m^2}{1 + m^2}$ Using $\alpha\beta = \frac{c}{a}$, $-1 \times x_p = \frac{m^2 - 1}{1 + m^2}$ \Rightarrow x_p = $\frac{1 - m^2}{1 + m^2}$ $\therefore y = m \left(\frac{1 - m^2}{1 + m^2} \right) + m$ $=\frac{2m}{1+m^2}$ $\therefore \mathbf{P} = \left(\frac{1-m^2}{1+m^2}, \frac{2m}{1+m^2}\right)$ e) As $\alpha = 2\beta$ $\therefore \tan \alpha = \tan 2\beta$ ie. $m_{\rm OP} = \tan \alpha$ So, $\tan 2\beta = m_{OP}$ $= \frac{2m}{1+m^2} \div \frac{1-m^2}{1+m^2}$ $=\frac{2m}{1-m^2}$ $\therefore \tan 2\beta = \frac{2\tan\beta}{1-\tan^2\beta}$

f) Let $\beta = 15^{\circ}$	
So, $\tan 30 = \frac{2 \tan 15^\circ}{2 \tan 15^\circ}$	
$1 - \tan^2 15^\circ$	
ie $\frac{1}{\sqrt{2}} = \frac{2 \tan 15^\circ}{2 \tan 15^\circ}$	
$\sqrt{3}$ 1- tan ² 15°	
$\tan^2 15^4 + 2\sqrt{3} \tan 15^4 - 1 = 0$	
Solving the quadratic equation, $\tan 15^\circ = \pm (2 \sqrt{2})$	
$\begin{bmatrix} \tan 15 & -1(2-\sqrt{5}) \end{bmatrix}$	
But $\tan 15^\circ > 0$, $\therefore \tan 15^\circ = 2 - \sqrt{3}$	