| 7         |           | D    | 7        |
|-----------|-----------|------|----------|
|           | * 35      | } ∗  |          |
|           | A)        | Ê    |          |
| 9         | Ĩ         |      | 6        |
| FABER EST |           |      | FORTUNAE |
|           | SUAE QUIS | SQUE |          |

| Name: |  |  |  |  |  |  |  |  |
|-------|--|--|--|--|--|--|--|--|
|       |  |  |  |  |  |  |  |  |
|       |  |  |  |  |  |  |  |  |

Teacher: \_\_\_\_\_

Class: \_\_\_\_\_

FORT STREET HIGH SCHOOL

## 2006

## PRELIMINARY SCHOOL CERTIFICATE COURSE ASSESSMENT TASK 3: FINAL PRELIMINARY EXAMINATION

## Mathematics Extension I

TIME ALLOWED: 2 HOURS

| Outcomes Assessed                                                    | Questions | Marks |
|----------------------------------------------------------------------|-----------|-------|
| Demonstrates appropriate mathematical techniques in basic algebra,   | 1, 2      |       |
| equations and geometry.                                              |           |       |
| Manipulates algebraic expressions to solve problems from topic areas | 3, 5      |       |
| such as functions, trigonometry and quadratics.                      |           |       |
| Demonstrates skills in the processes of calculus and applies them    | 4, 6      |       |
| appropriately.                                                       |           |       |
| Synthesises mathematical solutions to harder problems and            | 7         |       |
| communicates them in appropriate form.                               |           |       |

| Question | 1   | 2   | 3   | 4   | 5   | 6   | 7   | Total | % |
|----------|-----|-----|-----|-----|-----|-----|-----|-------|---|
| Marks    | /12 | /12 | /12 | /12 | /12 | /12 | /12 | /84   |   |

## Directions to candidates:

- Attempt all questions
- The marks allocated for each question are indicated on the right thus: [1]
- All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work.
- Board approved calculators may be used
- Each new question is to be started in a new booklet

Question One: 12 marks (Start a new booklet)

a) Express 
$$\frac{1+\sqrt{8}}{1-3\sqrt{2}}$$
 with a rational denominator. [2]

b) If  $H = (1-k)^n$ , find the value of k (to 4 significant figures) given H = 0.13 and n = 7

c) Express 
$$\frac{1-x^{-1}}{x^{-1}-x^{-2}}$$
 in its simplest form [2]

[2]

d) Find the values of  $\theta$ , with  $0^{\circ} \le \theta \le 360^{\circ}$ , for which  $2\cos\theta = -\sqrt{2}$  [2]

e) Find the value of 
$$\frac{a^2b^3}{c^2}$$
 given  $a = \left(\frac{3}{4}\right)^3$ ,  $b = \left(\frac{2}{3}\right)^2$  and  $c = \left(\frac{1}{2}\right)^4$  as a fraction. [2]

f) Sketch the graph of 
$$y = |2x - 1|$$
 [2]

Question Two: 12 marks (Start a new booklet)

a) Solve for 
$$x: \frac{2}{x} > x - 1$$
. [3]

b) ABCD is a parallelogram with CD produced to E so that ED =AD.



Prove that 
$$\angle ABC = 2 \angle DEA$$
. [2]

- c) Given  $\log 2 = a$  and  $\log 3 = b$ , find  $\log 2.25$  in terms of a and b. [2]
- d) For the lines y = 3x 1 and x 2y + 5 = 0:
  - i) Find the acute angle between these lines. [2]
  - ii) Using the *k*-method or otherwise, find the equation of the line through the intersection of these lines that passes through P(1,-1) [3]

## Question Three: 12 marks (Start a new booklet)

| a) | The angle of depression from the top of a 120m cliff down to a boat in line with the bottom of the cliff is 35°. Calculate the distance of the boat from the base of the cliff (to the nearest m). | [2] |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| b) | The quadratic equation $3x^2 - 5x + 2 = 0$ has roots $\alpha$ and $\beta$ . Find the value of                                                                                                      |     |
|    | i) $(\alpha - 1)(\beta - 1)$                                                                                                                                                                       | [1] |
|    | ii) $\frac{1}{\alpha^2} + \frac{1}{\beta^2}$                                                                                                                                                       | [2] |
| c) | Find the coordinates of the point that divides the interval between $A(1,-6)$ and $B(-4,3)$ externally in the ratio 3:2.                                                                           | [2] |
| d) | Solve $x^4 - 3x^2 - 4 = 0$ for x.                                                                                                                                                                  | [3] |

e) Prove 
$$\frac{\cos\theta(\sin\theta + \cos\theta)}{(1+\sin\theta)(1-\sin\theta)} = 1 + \tan\theta$$
 [2]

## Question Four: 12 marks (Start a new booklet)

a) Differentiate with respect to x:

i) 
$$x^3 - 5x^2 + 3$$
 [1]

ii) 
$$(5-2x^2)^7$$
 [1]

iii) 
$$\frac{2x}{1+4x}$$
 [2]

b) Find the gradient function for 
$$f(x) = \frac{1}{x}$$
 from first principles. [3]

## c) For the curve $y = 4 + 3x - x^2$ , find the:

i) equation of the tangent at 
$$x = 1$$
 (in General Form) [3]

ii) find the exact distance of point 
$$P(2,-1)$$
 from this tangent [2]

#### Question Five: 12 marks (Start a new booklet)

- a) Find the values of *a*, *b* and *c* such that  $2x^2 5x + 7$  can be expressed in the form  $a(x+b)^2 + c$  [4]
- b) Find the value of x, giving reasons.





c) For what values of k does the quadratic  $x^2 + (k+1)x - (k-1) = 0$  have distinct real roots? [4]

#### Question Six: 12 marks (Start a new booklet)

- a) Points P(2,4) and  $Q(x_1, y_1)$  are on the parabola  $y = x^2$ :
  - i) Show the equation of the normal at point *P* is given by x + 4y 18 = 0.

[1]

[3]

- ii) The tangent at Q is parallel to the normal at P. Find the coordinates of Q and the equation (in general form) of the tangent at Q.
- b) For the function y = f(x), the graph of its derivative y = f'(x) is shown below.



- i) For what values of x is f(x) rising? [1]
- ii) What are the *x*-values of the stationary points of f(x)? [1]
- iii) Given x = -1 is a root of f(x), and the minimum value of f(x)is -3, draw a neat sketch of a possible y = f(x) for -2 < x < 5. [2]
- c) For the curve given by  $y = x^3 + 3x^2 9x 7$ , find any stationary points or points of inflection and determine their nature. [4]

#### Question Seven: 12 marks (Start a new booklet)

a) A and C are two separate points on the circle, centre O, as shown in the diagram below. Tangents at A and C meet a B. D is a point on the circumference of the circle.



Prove that quadrilateral ABCD can never be cyclic.

b) AB is a tower of height *h* metres. From points C and D in the same plane as the base of the tower, the angles of elevation to the top of the tower are 12° and 8° respectively, as shown in the diagram opposite. From the base of the tower, the bearing of points C and D are 229°T and 187°T respectively. Find the height of the tower (to the nearest metre) if C is 400m from D.



[4]

[3]

(Question 7 continues over)



[1]



- i) Show the equation of the line is y = mx 2m + 4, where *m* is the gradient of the line.
- ii) Show that points A and B, where the line meets the axes, have coordinates (0,4-2m) and  $\left(\frac{2m-4}{m},0\right)$  respectively. [1]
- iii) Find the value of *m* for which the area of triangle AOB is least. [3]

#### Solutions: Preliminary Final Exam Extension 1 2006.

## Question One:

a) 
$$= \frac{1 - \sqrt{8}}{1 - 3\sqrt{2}} \times \frac{1 + 3\sqrt{2}}{1 + 3\sqrt{2}}$$

$$= \frac{(1 - 2\sqrt{2})(1 + 3\sqrt{2})}{(1 - 18)}$$

$$= \frac{1 - 2\sqrt{2} + 3\sqrt{2} - 12}{17}$$

$$= \frac{3\sqrt{2} - 11}{17}$$
[1]

\_

b) 
$$H = (1-k)^{n}$$
  
i.e.  $\sqrt[7]{0.13} = 1-k$  [1]  
or  $k = 1 - \sqrt[7]{0.13}$ 

:. 
$$k = 0.252828189$$
  
i.e.  $k = 0.2528$  (to 4 sig. figs) [1]

c) 
$$\frac{1-x^{-1}}{x^{-1}-x^{-2}}$$

$$= \frac{1-\frac{1}{x}}{\frac{1}{x}-\frac{1}{x^{2}}}$$

$$= \frac{x-1}{\frac{x}{x^{2}}}$$

$$= \frac{x-1}{x} \times \frac{x^{2}}{x-1}$$

$$= x$$
[1]

d) 
$$2\cos\theta = -\sqrt{2}$$
  
 $\cos\theta = \frac{-\sqrt{2}}{2}$   
 $\theta = \cos^{-1}\left(\frac{-1}{\sqrt{2}}\right)$ 

i.e. base  $\phi$  is 45° Cos is negative in Q's 2 & 3

$$\therefore \theta = 180 - \phi, \ 180 + \phi$$
  
i.e.  $\theta = 135^{\circ}, \ 225^{\circ}$  [1]  
e)  $a = \left(\frac{3}{4}\right)^{3}, \ b = \left(\frac{2}{3}\right)^{2} \ c = \left(\frac{1}{2}\right)^{4}$   
$$\therefore \frac{a^{2}b^{3}}{c^{2}}$$
  
$$= \frac{\left(\left(\frac{3}{4}\right)^{3}\right)^{2}\left(\left(\frac{2}{3}\right)^{2}\right)^{3}}{\left(\left(\frac{1}{2}\right)^{4}\right)^{2}}$$
  
$$= \frac{3^{6}}{4^{6}} \times \frac{2^{6}}{3^{6}} \div \frac{1}{2^{8}}$$
 [1]  
$$= \frac{3^{6} \cdot 2^{6} \cdot 2^{8}}{2^{12} \cdot 3^{6}}$$
  
$$= 2^{2}$$
  
$$= 4$$
 [1]  
f) Sketch  $y = |2x - 1|$   
$$= \frac{7}{4^{4}}$$
  

[1]

#### Question Two:

a) 
$$x x^2$$
:  $2x > x^3 - x^2$   
i.e.  $x^3 - x^2 - 2x < 0$   
 $\therefore x(x^2 - x - 2) < 0$   
Boundary points when  
 $x(x^2 - x - 2) = 0$   
 $x(x - 2)(x + 1) = 0$   
i.e.  $x = -1, 0, 2$  [1]  
so for  $\frac{2}{x} > x - 1$   
testing points between boundaries: [1]  
 $x = -2; x = \frac{-1}{2}; x = 1; x = 3$   
LHS: LHS: LHS: LHS: LHS:  
 $= \frac{2}{-2} = \frac{2}{-1} = \frac{2}{1} = \frac{2}{3}$   
 $= -1 = -4 = 2$   
RHS: RHS: RHS: RHS: RHS:  
 $= -2 - 1 = \frac{-1}{2} - 1 = 1 - 1 = 3 - 1$   
 $= -3 = -1\frac{1}{2} = 0 = 2$   
LHS LHS HHS  
False True False True  
 $\therefore -1 < x < 0, x > 2$  is soln. [1]  
(any equivalent method ok)  
b) Let  $\angle DEA = x$   
 $\therefore \angle CDA = x + x (ext. \angle of \Delta EDA [1] = 2x$   
 $\therefore \angle ABC = 2x (op. \angle s | | gram =)$  [1]  
 $\therefore \angle ABC = 2 \angle DEA$   
c)  $\log 2.25$   
 $= \log \frac{9}{4}$   
 $= \log \frac{3^2}{2^2}$   
 $= \log 3^2 - \log 2^2$  [1]  
 $= 2\log 3 - 2\log 2$   
 $= 2a + 2b$  [1]

d) 
$$y = 3x - 1$$
 and  $x - 2y + 5 = 0$   
i)  $m_1 = 3$  and  $m_2 = \frac{1}{2}$ , so  
 $\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$   
 $= \left| \frac{3 - \frac{1}{2}}{1 + 3 \times \frac{1}{2}} \right|$  [1]  
 $= \left| \frac{2 \frac{1}{2}}{2 \frac{1}{2}} \right|$   
 $= 1$   
 $\therefore \theta = \tan^{-1}(1)$   
 $= 45^{\circ}$  [1]  
ii) Required equation is given by  
 $3x - y - 1 + k(x - 2y + 5) = 0$  [1]  
Substituting for  $P(1, -1)$   
 $3 \times 1 - (-1) - 1 + k(1 - 2 \times (-1) + 5) = 0$   
i.e.  $3 + k(8) = 0$   
So  $k = \frac{-3}{8}$  [1]  
 $\therefore$  equation is  
 $3x - y - 1 + \left(\frac{-3}{8}\right)(x - 2y + 5) = 0$   
 $24x - 8y - 8 + (-3x + 6y - 15) = 0$   
 $\therefore 21x - 2y - 23 = 0$  [1]

# <u>**Question Three**</u>: a) 35° 120m d $\tan 35 = \frac{120}{d}$ [1] $d = \frac{120}{\tan 35}$ d = 171.3777608d = 171m[1] b) $\alpha + \beta = \frac{5}{3}; \ \alpha\beta = \frac{2}{3}$ i) $(\alpha - 1)(\beta - 1)$ $= \alpha\beta - (\alpha + \beta) + 1$ $= \frac{5}{3} - \frac{2}{3} + 1$ = 2 ii) $\frac{1}{\alpha^{2}} + \frac{1}{\beta^{2}}$ [1]

$$= \frac{\alpha^{2} + \beta^{2}}{\alpha^{2} \beta^{2}}$$

$$= \frac{(\alpha + \beta)^{2} - 2\alpha\beta}{(\alpha\beta)^{2}} \qquad [1]$$

$$= \frac{(5/3)^{2} - 2 \times 2/3}{(2/3)^{2}}$$

$$= \frac{(25 - 12)/9}{4/9}$$

$$= \frac{13}{4}$$

$$= 3\frac{1}{4} \qquad [1]$$

c) 
$$A(1,-6)$$
 and  $B(-4,3)$   
Ratio  $-3:2$  (-ve for external)  
 $\left(\frac{1 \times 2 + (-4) \times (-3)}{-3+2}, \frac{(-6) \times 2 + 3 \times (-3)}{-3+2}\right)$   
 $= \left(\frac{14}{-1}, \frac{-21}{-1}\right)$   
 $= (-14,21)$  [1]  
d) Solve  $x^4 - 3x^2 - 4 = 0$ 

1) Solve 
$$x^{2} - 3x^{2} - 4 = 0$$
  
Let  $u = x^{2}$   
 $\therefore u^{2} - 3u - 4 = 0$   
 $(u+1)(u-4) = 0$ 
[1]

i.e. 
$$u = -1$$
, 4  
 $\therefore x^2 = -1$  (no real solution) [1]  
or  $x^2 = 4$   
 $\therefore x = \pm 2$  [1]

e) Prove  

$$\frac{\cos\theta(\sin\theta + \cos\theta)}{(1 + \sin\theta)(1 - \sin\theta)} = 1 + \tan\theta$$

$$LHS = \frac{\cos\theta(\sin\theta + \cos\theta)}{(1 + \sin\theta)(1 - \sin\theta)}$$

$$= \frac{\cos\theta(\sin\theta + \cos\theta)}{(1 - \sin^2\theta)}$$

$$= \frac{\cos\theta(\sin\theta + \cos\theta)}{\cos^2\theta}$$

$$= \frac{(\sin\theta + \cos\theta)}{\cos\theta}$$

$$= \frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\cos\theta}$$

$$= \tan\theta + 1$$
[1]

= RHS

[1]

[1]

b) 
$$f(x) = \frac{1}{x}$$
 and  $f(x+h) = \frac{1}{x+h}$   
 $\therefore \frac{dy}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ 

$$= \lim_{h \to 0} \frac{\frac{1}{x+h} - \frac{1}{x}}{h}$$

$$= \lim_{h \to 0} \frac{\frac{x - (x+h)}{h}}{h}$$

$$= \lim_{h \to 0} \frac{-h}{h}$$

$$= \lim_{h \to 0} \frac{-h}{hx(x+h)}$$

$$= \frac{1}{h \to 0} \frac{-1}{x^2 + hx}$$

$$= \frac{-1}{x^2}$$
(1)  
c)  $y = 4 + 3x - x^2$ 
(1)

1) 
$$y'=3-2x$$
 [1]  
so for tangent at  $x = 1$ :  $y'=1$   
and  $y = 6$  [1]  
 $\therefore y - 6 = 1(x-1)$   
or  $0 = x - y + 5$  [1]

ii) For distance of P(2,-1) from tangent:

## Question Five:

a) 
$$a(x+b)^{2} + c$$
  
 $= ax^{2} + 2abx + b^{2} + c$   
i.e.  
 $2x^{2} - 5x + 7 \equiv ax^{2} + 2abx + b^{2} + c$  [1]  
 $\therefore a = 2$  [1]  
also  $2ab = -5$ 

$$\therefore b = -\frac{5}{4}$$
 [1]

and 
$$b^{2} + c = 7$$
  
 $\therefore c = 7 - \left(\frac{-5}{4}\right)^{2}$   
so  $c = \frac{87}{16}$   
or  $c = 5\frac{7}{16}$  [1]

i) Reflex 
$$\angle AOC = 2 \times 124^{\circ}$$
  
(angle at centre double angle at circumference) [1]  
 $\therefore \angle AOC = 248^{\circ}$   
but  $\therefore \angle AOC = x^{\circ} + \angle DOC$   
where  $\angle DOC$  is a st.line.  
 $\therefore 248 = x + 180$   
i.e.  $x = 68$  [1]  
ii)  $\angle ADC = \angle ABC$  (in same seg.  
Standing on same arc)  
 $\therefore \angle ABC = 40^{\circ}$   
 $\angle ACB = 90^{\circ}$  (angle in semicircle) [1]  
 $\therefore 40 + 90 + x = 180$  ( $\triangle$  sum)  
so  $x = 50$  [1]  
c) For  $x^{2} + (k+1)x - (k-1) = 0$   
Distinct real roots when  $\triangle > 0$ .  
i.e.  $(k+1)^{2} - 4 \times 1 \times - (k-1) > 0$   
 $k^{2} - 2k + 1 + 4k - 8 > 0$   
 $\therefore k^{2} + 2k - 7 > 0$  [1]  
Boundaries when  $\triangle = 0$   
i.e. when  $k^{2} + 2k - 7 = 0$   
 $\therefore k = \frac{-(2) \pm \sqrt{2^{2} - 4 \times 1 \times -7}}{2 \times 1}$ 

$$k = \frac{-2 \pm \sqrt{32}}{2}$$

$$k = \frac{-2 \pm \sqrt{32}}{2}$$

$$k = \frac{-2 \pm 4\sqrt{2}}{2}$$

$$k = -1 \pm 2\sqrt{2}$$
[1]
Testing k=0 in  $k^2 + 2k - 7 > 0$ 
LHS= -7
<0
\therefore k < -1 - 2\sqrt{2}
or  $k > -1 + 2\sqrt{2}$ 
[1]

a) 
$$P(2,4) \text{ and } Q(x_1, y_1) \text{ on } y = x^2$$
i) 
$$\frac{dy}{dx} = 2x$$
At  $P(2,4)$ :
$$\frac{dy}{dx} = 4$$
So gradient of normal is  $\frac{-1}{4}$ :
$$\therefore (y-4) = \frac{-1}{4}(x-2)$$
(1)
$$4y-16 = -x+2$$
i.e.  $x+4y-18 = -x+2$ 
ii) At  $Q(x_1, y_1)$ ,  $\frac{dy}{dx} = 2x_1$  but also
$$\frac{dy}{dx} = \frac{-1}{4}$$

$$\therefore 2x_1 = \frac{-1}{4}$$
i.e.  $x_1 = \frac{-1}{8}$ 
(1)

$$\therefore y_1 = \frac{1}{64} \text{ so } Q \text{ is } \left(\frac{-1}{8}, \frac{1}{64}\right)$$
[1]  
Equation of the tangent is:  
$$\left(y - \frac{1}{64}\right) = \frac{-1}{4} \left(x - \frac{-1}{8}\right)$$
$$4y - \frac{1}{16} = -x - \frac{1}{8}$$

[1]

b)

i) f(x) is rising when f'(x) > 0i.e. for x > 0 [1]

 $\therefore 64y - 1 = -16x - 2$ 

or 16x + 64y + 1 = 0

ii) Stat points when f'(x) = 0i.e. when x = 0 or x = 3 [1]



y-values are: x = -3 $y = (-3)^3 + 3(-3)^2 - 9(-3) - 7$ y = 20, so point is (-3,20) x = 1 $y = (1)^3 + 3(1)^2 - 9(1) - 7$ y = -12, so point is (1,-12) Nature: x = -3: y'' = 6(-3) + 6i.e. y'' = -12 so ccd  $\Rightarrow$  max t.p. x = 1: y'' = 6(1) + 6i.e. y''=12 so ccu  $\Rightarrow$  min t.p. Possible inflection point(s) when y'' = 0:i.e. 0 = 6x + 6so x = -1y-value is:  $y = (-1)^3 + 3(-1)^2 - 9(-1) - 7$ y = 4, so point is (-1,4)Testing: For  $x = -1 - \varepsilon$  $y'' = 6(-1-\varepsilon) + 6$  $y'' = -6\varepsilon$ v'' < 0For  $x = -1 + \varepsilon$  $y'' = 6(-1+\varepsilon) + 6$  $y'' = 6\varepsilon$ y'' > 0 $\therefore$  as concavity changes, (-1,4) is a point of inflection. Marking: Finds correct Stat points Nature tests correct **Finds Inflection point** 

#### **Question Seven:**

Tests nature correctly

[1]

[1]

[1]

[1]

a) Join AC Let  $\angle CAB = x^{\circ}$ Now AB = BC (tangents from external point equal)  $\therefore \triangle ABC$  is isosceles

$$\therefore \angle ACB = x^{\circ} (base \angle's lsos \Delta)$$
  

$$\therefore \angle ABC = (180 - 2x)^{\circ} (\Delta sum)$$
[1]  
Also,  $\angle ADC = x^{\circ}$  (angle in alt.  
seg.)  
For  $ABCD$  to be cyclic, opposite  
angles must be supplementary;  
i.e.  $\angle ADC + \angle ABC = 180^{\circ}$  [1]  
i.e.  $x + (180 - 2x) = 180$   
which gives  $x = 0$  [1]  
but A and C are separate points,  
so  $x > 0$  [1]  

$$\therefore ABCD$$
 cannot be cyclic.  
b)  $\angle CBD = 229^{\circ} - 187^{\circ}$   

$$\therefore \angle CBD = 42^{\circ}$$
  
Also,  $\frac{h}{BD} = \tan 8^{\circ}$   

$$\therefore BD = h \cot 8^{\circ}$$
  
and  $\frac{h}{BC} = \tan 12^{\circ}$   

$$\therefore BC = h \cot 12^{\circ}$$
  
(correct expressions for BC, BD) [1]  
In  $\triangle CBD$ :  
 $CD^{2} = BD^{2} + BC^{2} - 2.BC.BD.\cos \angle CBD$   
 $400^{2} = (h \cot 8^{\circ})^{2} + (h \cot 12^{\circ})^{2}$   
 $-2 \times h \cot 8^{\circ} \times h \cot 12^{\circ} \times \cos 42^{\circ}$   
(correct substitutions) [1]  
 $h^{2} = \frac{400^{2}}{\cot^{2} 8 + \cot^{2} 12 - 2 \cot 8 \cot 12 \cos 42}$   
 $\therefore h^{2} = \frac{160000}{23.00821324}$   
 $h^{2} = 6954.03847$   
 $\therefore h = 83.39087762$   
 $\therefore h = 83$  (nearest m) [1]  
c)  $P(2,4)$   
i)  $(y - y_{1}) = m(x - x_{1})$  with  $P(2,4)$   
gives:  
 $(y - 4) = m(x - 2)$   
 $y - 4 = mx - 2m$  [1]  
or  $y = mx - 2m + 4$   
ii) For A,  $x = 0$ , subst in (i) gives  
 $y = -2m + 4$   
 $\therefore A(0,4 - 2m)$ 

For B, 
$$y = 0$$
, subst in (i) gives  
 $0 = mx - 2m + 4$   
or  $mx = 2m - 4$   
so  $x = \frac{2m - 4}{m}$   
 $\therefore B\left(\frac{2m - 4}{m}, 0\right)$   
(Correctly shown) [1]  
iii) Area of  $\triangle AOB$  is given by  
 $A = \frac{1}{2}bh$  where  
 $b = \frac{2m - 4}{m}$  and  $h = 4 - 2m$   
 $\therefore A = \frac{1}{2} \times \frac{(2m - 4)}{m} \times (4 - 2m)$   
i.e.  $A = \frac{-16 + 16m - 4m^2}{2m}$   
or  $A = 8 - \frac{8}{m} - 2m$  [1]  
 $\therefore \frac{dA}{dm} = \frac{8}{m^2} - 2$   
and  $\frac{d^2A}{dm^2} = \frac{-16}{m^3}$   
Min/Max when  $\frac{dA}{dm} = 0$   
i.e.  $0 = \frac{8}{m^2} - 2$   
or  $0 = 8 - 2m^2$   
 $\therefore 2m^2 = 8$   
 $m^2 = 4$   
so  $m = \pm 2$   
 $\frac{d^2A}{dm^2} = \frac{-16}{2^3}$   
 $< 0 \operatorname{ccd} \Rightarrow \max \operatorname{t.p.}$   
at  $m = -2$   
 $\frac{d^2A}{dm^2} = \frac{-16}{(-2)^3}$   
 $> 0 \operatorname{ccu} \Rightarrow \min \operatorname{t.p.}$  [1]  
 $\therefore m = -2$  is the gradient that  
gives the least area for  $\triangle AOB$