

Name: \qquad

Teacher: \qquad

Class: \qquad

FORT STREET HIGH SCHOOL

2006

PRELIMINARY SCHOOL CERTIFICATE COURSE
ASSESSMENT TASK 3: FINAL PRELIMINARY EXAMINATION

Mathematics Extension I

TIME ALLOWED: 2 HOURS

Outcomes Assessed	Questions	Marks
Demonstrates appropriate mathematical techniques in basic algebra, equations and geometry.	1,2	
Manipulates algebraic expressions to solve problems from topic areas such as functions, trigonometry and quadratics.	3,5	
Demonstrates skills in the processes of calculus and applies them appropriately.	4,6	
Synthesises mathematical solutions to harder problems and communicates them in appropriate form.	7	

Question	1	2	3	4	5	6	7	Total	$\%$
Marks	$I 12$	$I 12$		$I 12$	$I 12$		$I 12$	$I 12$	$I 2$

Directions to candidates:

- Attempt all questions
- The marks allocated for each question are indicated on the right thus: [1]
- All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work.
- Board - approved calculators may be used
- Each new question is to be started in a new booklet

Question One: 12 marks (Start a new booklet)

a) Express $\frac{1+\sqrt{8}}{1-3 \sqrt{2}}$ with a rational denominator.
b) If $H=(1-k)^{n}$, find the value of k (to 4 significant figures) given $H=0.13$ and $n=7$
c) Express $\frac{1-x^{-1}}{x^{-1}-x^{-2}}$ in its simplest form
d) Find the values of θ, with $0^{\circ} \leq \theta \leq 360^{\circ}$, for which $2 \cos \theta=-\sqrt{2}$
e) Find the value of $\frac{a^{2} b^{3}}{c^{2}}$ given $a=\left(\frac{3}{4}\right)^{3}, b=\left(\frac{2}{3}\right)^{2}$ and $c=\left(\frac{1}{2}\right)^{4}$ as a fraction.
f) Sketch the graph of $y=|2 x-1|$

Question Two: 12 marks (Start a new booklet)
a) Solve for $x: \frac{2}{x}>x-1$.
b) $A B C D$ is a parallelogram with $C D$ produced to E so that $E D=A D$.

Prove that $\angle A B C=2 \angle D E A$.
c) Given $\log 2=a$ and $\log 3=b$, find $\log 2.25$ in terms of a and b.
d) For the lines $y=3 x-1$ and $x-2 y+5=0$:
i) Find the acute angle between these lines.
ii) Using the k-method or otherwise, find the equation of the line through the intersection of these lines that passes through $P(1,-1)$

Question Three: 12 marks (Start a new booklet)
a) The angle of depression from the top of a 120 m cliff down to a boat in line with the bottom of the cliff is 35°. Calculate the distance of the boat from the base of the cliff (to the nearest m).
b) The quadratic equation $3 x^{2}-5 x+2=0$ has roots α and β. Find the value of
i) $(\alpha-1)(\beta-1)$
ii) $\quad \frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}$
c) Find the coordinates of the point that divides the interval between $A(1,-6)$ and $B(-4,3)$ externally in the ratio $3: 2$.
d) Solve $x^{4}-3 x^{2}-4=0$ for x.
e) Prove $\frac{\cos \theta(\sin \theta+\cos \theta)}{(1+\sin \theta)(1-\sin \theta)}=1+\tan \theta$

Question Four: 12 marks (Start a new booklet)

a) Differentiate with respect to x :
i) $x^{3}-5 x^{2}+3$
ii) $\quad\left(5-2 x^{2}\right)^{7}$
iii) $\frac{2 x}{1+4 x}$
b) Find the gradient function for $f(x)=\frac{1}{x}$ from first principles.
c) For the curve $y=4+3 x-x^{2}$, find the:
i) equation of the tangent at $x=1$ (in General Form)
ii) find the exact distance of point $P(2,-1)$ from this tangent

Question Five: 12 marks (Start a new booklet)

a) Find the values of a, b and c such that $2 x^{2}-5 x+7$ can be expressed in the form $a(x+b)^{2}+c$
b) Find the value of x, giving reasons.
i)

ii)

c) For what values of k does the quadratic $x^{2}+(k+1) x-(k-1)=0$ have distinct real roots?

Question Six: 12 marks (Start a new booklet)
a) Points $P(2,4)$ and $Q\left(x_{1}, y_{1}\right)$ are on the parabola $y=x^{2}$:
i) Show the equation of the normal at point P is given by $x+4 y-18=0$.
ii) The tangent at Q is parallel to the normal at P. Find the coordinates of Q and the equation (in general form) of the tangent at Q.
b) For the function $y=f(x)$, the graph of its derivative $y=f^{\prime}(x)$ is shown below.

i) For what values of x is $f(x)$ rising?
ii) What are the x-values of the stationary points of $f(x)$?
iii) Given $x=-1$ is a root of $f(x)$, and the minimum value of $f(x)$ is -3 , draw a neat sketch of a possible $y=f(x)$ for $-2<x<5$.
c) For the curve given by $y=x^{3}+3 x^{2}-9 x-7$, find any stationary points or points of inflection and determine their nature.

Question Seven: 12 marks (Start a new booklet)
a) A and C are two separate points on the circle, centre O, as shown in the diagram below. Tangents at A and C meet a B. D is a point on the circumference of the circle.

Prove that quadrilateral $A B C D$ can never be cyclic.
b) $A B$ is a tower of height h metres. From points C and D in the same plane as the base of the tower, the angles of elevation to the top of the tower are 12° and 8° respectively, as shown in the diagram opposite. From the base of the tower, the bearing of points C and D are $229^{\circ} \mathrm{T}$ and

$187^{\circ} T$ respectively. Find the height
of the tower (to the nearest metre) if C is 400 m from D .
c) A straight line passing through the point $P(2,4)$ cuts the positive axes at A and B.

i) Show the equation of the line is $y=m x-2 m+4$, where m is the gradient of the line.
ii) Show that points A and B, where the line meets the axes, have coordinates $(0,4-2 m)$ and $\left(\frac{2 m-4}{m}, 0\right)$ respectively.
iii) Find the value of m for which the area of triangle AOB is least.

Solutions: Preliminary Final Exam

Extension 12006.

Question One:

$$
\text { a) } \begin{aligned}
& =\frac{1-\sqrt{8}}{1-3 \sqrt{2}} \times \frac{1+3 \sqrt{2}}{1+3 \sqrt{2}} \\
& =\frac{(1-2 \sqrt{2})(1+3 \sqrt{2})}{(1-18)} \\
& =\frac{1-2 \sqrt{2}+3 \sqrt{2}-12}{17} \\
& =\frac{3 \sqrt{2}-11}{17}
\end{aligned}
$$

b) $H=(1-k)^{n}$
i.e. $\sqrt[7]{0.13}=1-k$
or $k=1-\sqrt[7]{0.13}$
$\therefore k=0.252828189$
i.e. $k=0.2528$ (to 4 sig. figs)
c) $\frac{1-x^{-1}}{x^{-1}-x^{-2}}$

$$
\begin{aligned}
& =\frac{1-\frac{1}{x}}{\frac{1}{x}-\frac{1}{x^{2}}} \\
& =\frac{\frac{x-1}{x}}{\frac{x-1}{x^{2}}} \\
& =\frac{x-1}{x} \times \frac{x^{2}}{x-1} \\
& =x
\end{aligned}
$$

$$
\therefore \theta=180-\phi, \quad 180+\phi
$$

$$
\text { i.e. } \theta=135^{\circ}, 225^{\circ}
$$

e) $a=\left(\frac{3}{4}\right)^{3}, b=\left(\frac{2}{3}\right)^{2} c=\left(\frac{1}{2}\right)^{4}$
$\therefore \frac{a^{2} b^{3}}{c^{2}}$
$=\frac{\left(\left(\frac{3}{4}\right)^{3}\right)^{2}\left(\left(\frac{2}{3}\right)^{2}\right)^{3}}{\left(\left(\frac{1}{2}\right)^{4}\right)^{2}}$
$=\frac{3^{6}}{4^{6}} \times \frac{2^{6}}{3^{6}} \div \frac{1}{2^{8}}$
$=\frac{3^{6} \cdot 2^{6} \cdot 2^{8}}{2^{12} \cdot 3^{6}}$
$=2^{2}$
$=4$
f) Sketch $y=|2 x-1|$

"Vertex" correct
[1] Shape with correct y intercept
[1!2]
i.e. base ϕ is 45°

Cos is negative in Q's 2 \& 3

Question Two:

a) $\times x^{2}: 2 x>x^{3}-x^{2}$
i.e. $x^{3}-x^{2}-2 x<0$
$\therefore x\left(x^{2}-x-2\right)<0$
Boundary points when
$x\left(x^{2}-x-2\right)=0$
$x(x-2)(x+1)=0$
i.e. $x=-1,0,2$
so for $\frac{2}{x}>x-1$
testing points between boundaries: [1]
$x=-2 ; \quad x=\frac{-1}{2} ; \quad x=1 ; \quad x=3$
LHS: LHS: LHS: LHS:
$=\frac{2}{-2}=\frac{2}{\frac{-1}{2}}=\frac{2}{1}=\frac{2}{3}$
$=-1=-4=2$
RHS: RHS: RHS: RHS:
$=-2-1=\frac{-1}{2}-1=1-1=3-1$
$=-3=-1 \frac{1}{2}=0=2$
<LHS >LHS <LHS >LHS
False True False True
$\therefore-1<x<0, x>2$ is soln.
(any equivalent method ok)
b) Let $\angle D E A=x$
$\therefore \angle E A D=x$ (base \angle 's Isos Δ)
$\therefore \angle C D A=x+x$ (ext. \angle of $\Delta \mathrm{EDA}$

$$
\begin{equation*}
=2 x \tag{1}
\end{equation*}
$$

$\therefore \angle A B C=2 x$ (op. \angle 's \|gram =)
$\therefore \angle A B C=2 \angle D E A$
C) $\quad \log 2.25$

$$
\begin{align*}
& =\log \frac{9}{4} \\
& =\log \frac{3^{2}}{2^{2}} \\
& =\log 3^{2}-\log 2^{2} \tag{1}\\
& =2 \log 3-2 \log 2 \\
& =2 a+2 b
\end{align*}
$$

d) $y=3 x-1$ and $x-2 y+5=0$
i) $m_{1}=3$ and $m_{2}=\frac{1}{2}$, so
$\tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|$
$=\left|\frac{3-\frac{1}{2}}{1+3 \times \frac{1}{2}}\right|$
$=\left|\frac{2 \frac{1}{2}}{2 \frac{1}{2}}\right|$
$=1$
$\therefore \theta=\tan ^{-1}(1)$
$=45^{\circ}$
[1]
[1]
ii) Required equation is given by
$3 x-y-1+k(x-2 y+5)=0$
Substituting for $P(1,-1)$
$3 \times 1-(-1)-1+k(1-2 \times(-1)+5)=0$
i.e. $3+k(8)=0$

So $k=\frac{-3}{8}$
\therefore equation is
$3 x-y-1+\left(\frac{-3}{8}\right)(x-2 y+5)=0$
$24 x-8 y-8+(-3 x+6 y-15)=0$
$\therefore 21 x-2 y-23=0$

Question Three:
a)

$$
\tan 35=\frac{120}{d}
$$

$$
d=\frac{120}{\tan 35}
$$

$$
d=171.3777608
$$

$$
d=171 \mathrm{~m}
$$

b) $\alpha+\beta=\frac{5}{3} ; \quad \alpha \beta=\frac{2}{3}$
i) $(\alpha-1)(\beta-1)$
$=\alpha \beta-(\alpha+\beta)+1$
$=\frac{5}{3}-\frac{2}{3}+1$
$=2$
ii) $\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}$

$$
\begin{aligned}
& =\frac{\alpha^{2}+\beta^{2}}{\alpha^{2} \beta^{2}} \\
& =\frac{(\alpha+\beta)^{2}-2 \alpha \beta}{(\alpha \beta)^{2}}
\end{aligned}
$$

$$
=\frac{(5 / 3)^{2}-2 \times 2 / 3}{(2 / 3)^{2}}
$$

$$
(25-12) /
$$

$$
=\frac{1 / 9}{4 / 9}
$$

$$
=\frac{13}{4}
$$

$$
=3 \frac{1}{4}
$$

c) $A(1,-6)$ and $B(-4,3)$

Ratio -3:2 (-ve for external)
$\left(\frac{1 \times 2+(-4) \times(-3)}{-3+2}, \frac{(-6) \times 2+3 \times(-3)}{-3+2}\right)$
[1]
$=\left(\frac{14}{-1}, \frac{-21}{-1}\right)$
$=(-14,21)$
d) Solve $x^{4}-3 x^{2}-4=0$

Let $u=x^{2}$
$\therefore u^{2}-3 u-4=0$
$(u+1)(u-4)=0$
i.e. $u=-1, \quad 4$
$\therefore x^{2}=-1$ (no real solution)
or $x^{2}=4$
$\therefore x= \pm 2$
e) Prove
$\frac{\cos \theta(\sin \theta+\cos \theta)}{(1+\sin \theta)(1-\sin \theta)}=1+\tan \theta$
LHS $=\frac{\cos \theta(\sin \theta+\cos \theta)}{(1+\sin \theta)(1-\sin \theta)}$
$=\frac{\cos \theta(\sin \theta+\cos \theta)}{\left(1-\sin ^{2} \theta\right)}$
$=\frac{\cos \theta(\sin \theta+\cos \theta)}{\cos ^{2} \theta}$
$=\frac{(\sin \theta+\cos \theta)}{\cos \theta}$
$=\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\cos \theta}$
$=\tan \theta+1$
$=$ RHS

Question Four:

a) Differentiations:
i) $3 x^{2}-5$
ii) $7\left(5-2 x^{2}\right)^{6}(-4 x)$

$$
=-28 x\left(5-2 x^{2}\right)^{6}
$$

iii) $\frac{2 x}{1+4 x}: \begin{aligned} & u=2 x, v=1+4 x \\ & d u=2 ; d v=4\end{aligned}$

$$
\begin{aligned}
\therefore y^{\prime} & =\frac{(1+4 x) \times 2-2 x \times 4}{(1+4 x)^{2}} \\
& =\frac{2+8 x-8 x}{(1+4 x)^{2}} \\
& =\frac{2}{(1+4 x)^{2}}
\end{aligned}
$$

[1]
[1]
b) $f(x)=\frac{1}{x}$ and $f(x+h)=\frac{1}{x+h}$

$$
\therefore \frac{d y}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

$$
=\lim _{h \rightarrow 0} \frac{\frac{1}{x+h}-\frac{1}{x}}{h}
$$

$$
=\lim _{h \rightarrow 0} \frac{\frac{x-(x+h)}{x(x+h)}}{h}
$$

$$
=\lim _{h \rightarrow 0} \frac{-h}{h x(x+h))}
$$

$$
=\lim _{h \rightarrow 0} \frac{-1}{x^{2}+h x}
$$

$$
=\frac{-1}{x^{2}}
$$

C) $y=4+3 x-x^{2}$
i) $y^{\prime}=3-2 x$
so for tangent at $x=1$: $y^{\prime}=1$
and $y=6$
[1]
$\therefore y-6=1(x-1)$
or $0=x-y+5$
ii) For distance of $P(2,-1)$ from tangent:

Question Five:

a) $a(x+b)^{2}+c$
$=a x^{2}+2 a b x+b^{2}+c$
i.e.
$2 x^{2}-5 x+7 \equiv a x^{2}+2 a b x+b^{2}+c$
[1]
$\therefore a=2$
also $2 a b=-5$
$\therefore b=-\frac{5}{4}$
and $b^{2}+c=7$
$\therefore c=7-\left(\frac{-5}{4}\right)^{2}$
so $c=\frac{87}{16}$
or $c=5 \frac{7}{16}$
b)
i) Reflex $\angle A O C=2 \times 124^{\circ}$
(angle at centre double angle at circumference)
[1]
$\therefore \angle A O C=248^{\circ}$
but $\therefore \angle A O C=x^{\circ}+\angle D O C$
where $\angle D O C$ is a st.line.
$\therefore 248=x+180$
i.e. $x=68$
[1]
ii) $\angle A D C=\angle A B C$ (in same seg.

Standing on same arc)
$\therefore \angle A B C=40^{\circ}$
$\angle A C B=90^{\circ}$ (angle in semicircle)

$$
\begin{align*}
& \therefore 40+90+x=180(\Delta \text { sum }) \\
& \text { so } x=50 \tag{1}
\end{align*}
$$

C) For $x^{2}+(k+1) x-(k-1)=0$

Distinct real roots when $\Delta>0$.
i.e. $(k+1)^{2}-4 \times 1 \times-(k-1)>0$

$$
\begin{equation*}
k^{2}-2 k+1+4 k-8>0 \tag{1}
\end{equation*}
$$

$\therefore k^{2}+2 k-7>0$
Boundaries when $\Delta=0$
i.e. when $k^{2}+2 k-7=0$
$\therefore k=\frac{-(2) \pm \sqrt{2^{2}-4 \times 1 \times-7}}{2 \times 1}$
1]
$k=\frac{-2 \pm \sqrt{32}}{2}$
$k=\frac{-2 \pm \sqrt{32}}{2}$
$k=\frac{-2 \pm 4 \sqrt{2}}{2}$
$k=-1 \pm 2 \sqrt{2}$
[1]
Testing $\mathrm{k}=0$ in $k^{2}+2 k-7>0$
LHS $=-7$
<0
$<$ RHS
i.e. false so 0 is not a solution.
$\therefore k<-1-2 \sqrt{2}$
or $k>-1+2 \sqrt{2}$
ii) At $Q\left(x_{1}, y_{1}\right), \frac{d y}{d x}=2 x_{1}$ but also
$\frac{d y}{d x}=\frac{-1}{4}$
$\therefore 2 x_{1}=\frac{-1}{4}$
$\therefore y_{1}=\frac{1}{64}$ so Q is $\left(\frac{-1}{8}, \frac{1}{64}\right)$
Equation of the tangent is:
$\left(y-\frac{1}{64}\right)=\frac{-1}{4}\left(x-\frac{-1}{8}\right)$
$4 y-\frac{1}{16}=-x-\frac{1}{8}$
$\therefore 64 y-1=-16 x-2$
or $16 x+64 y+1=0$
b)
i) $\quad f(x)$ is rising when $f^{\prime}(x)>0$ i.e. for $x>0$
ii) Stat points when $f^{\prime}(x)=0$
i.e. when $x=0$ or $x=3$
iii)

Correct roots
[1]
Correct shape
[1]
c) $y=x^{3}+3 x^{2}-9 x-7$
$\therefore y^{\prime}=3 x^{2}+6 x-9$
and $y^{\prime \prime}=6 x+6$
Stat Points when $y^{\prime}=0$:
$\therefore 0=3 x^{2}+6 x-9$
or $0=x^{2}+2 x-3$
i.e. $0=(x+3)(x-1)$
$\therefore x=-3$ or $x=1$
y-values are:
$x=-3$
$y=(-3)^{3}+3(-3)^{2}-9(-3)-7$
$y=20$, so point is $(-3,20)$
$x=1$
$y=(1)^{3}+3(1)^{2}-9(1)-7$
$y=-12$, so point is $(1,-12)$
Nature:
$x=-3: y^{\prime \prime}=6(-3)+6$
i.e. $y^{\prime \prime}=-12$ so ccd \Rightarrow max t.p.
$x=1: y^{\prime \prime}=6(1)+6$
i.e. $y^{\prime \prime}=12$ so $\mathrm{ccu} \Rightarrow \min$ t.p.

Possible inflection point(s) when
$y^{\prime \prime}=0$:
i.e. $0=6 x+6$
so $x=-1$
y -value is:
$y=(-1)^{3}+3(-1)^{2}-9(-1)-7$
$y=4$, so point is $(-1,4)$
Testing:
For $x=-1-\varepsilon$
$y^{\prime \prime}=6(-1-\varepsilon)+6$
$y^{\prime \prime}=-6 \varepsilon$
$y^{\prime \prime}<0$
For $x=-1+\varepsilon$
$y^{\prime \prime}=6(-1+\varepsilon)+6$
$y^{\prime \prime}=6 \varepsilon$
$y^{\prime \prime}>0$
\therefore as concavity changes, $(-1,4)$ is a point of inflection.

Marking:

Finds correct Stat points
Nature tests correct
Finds Inflection point
[1]
Tests nature correctly

Question Seven:

a) Join $A C$

Let $\angle C A B=x^{\circ}$
Now $A B=B C$ (tangents from
external point equal)
$\therefore \triangle A B C$ is isosceles
$\therefore \angle A C B=x^{\circ}$ (base \angle 's Isos Δ)
$\therefore \angle A B C=(180-2 x)^{\circ}$ (Δ sum)
Also, $\angle A D C=x^{\circ}$ (angle in alt.
seg.)
For $A B C D$ to be cyclic, opposite
angles must be supplementary;
i.e. $\angle A D C+\angle A B C=180^{\circ}$
i.e. $x+(180-2 x)=180$
which gives $x=0$
but A and C are separate points,
So $x>0$
$\therefore A B C D$ cannot be cyclic.
b) $\angle C B D=229^{\circ}-187^{\circ}$
$\therefore \angle C B D=42^{\circ}$
Also, $\frac{h}{B D}=\tan 8^{\circ}$
$\therefore B D=h \cot 8^{\circ}$
and $\frac{h}{B C}=\tan 12^{\circ}$
$\therefore B C=h \cot 12^{\circ}$
(correct expressions for BC, BD)
[1]
In $\triangle C B D$:

$$
\begin{aligned}
& C D^{2}=B D^{2}+B C^{2}-2 \cdot B C \cdot B D \cdot \cos \angle C B D \\
& 400^{2}=\left(h \cot 8^{\circ}\right)^{2}+\left(h \cot 12^{\circ}\right)^{2} \\
& -2 \times h \cot 8^{\circ} \times h \cot 12^{\circ} \times \cos 42^{\circ} \\
& \text { (correct substitutions) }
\end{aligned}
$$

$h^{2}=\frac{400^{2}}{\cot ^{2} 8+\cot ^{2} 12-2 \cot 8 \cot 12 \cos 42}$
$\therefore h^{2}=\frac{160000}{23.00821324}$
$h^{2}=6954.03847$
$\therefore h=83.39087762$
$\therefore h=83$ (nearest m)
c) $P(2,4)$
i) $\left(y-y_{1}\right)=m\left(x-x_{1}\right)$ with $P(2,4)$
gives:
$(y-4)=m(x-2)$
$y-4=m x-2 m$
or $y=m x-2 m+4$
ii) For $A, x=0$, subst in (i) gives $y=-2 m+4$
$\therefore A(0,4-2 m)$

For $B, y=0$, subst in (i) gives
$0=m x-2 m+4$
or $m x=2 m-4$
SO $x=\frac{2 m-4}{m}$
$\therefore B\left(\frac{2 m-4}{m}, 0\right)$
(Correctly shown)
iii) Area of $\triangle A O B$ is given by $A=\frac{1}{2} b h$ where
$b=\frac{2 m-4}{m}$ and $h=4-2 m$
$\therefore A=\frac{1}{2} \times \frac{(2 m-4)}{m} \times(4-2 m)$
i.e. $A=\frac{-16+16 m-4 m^{2}}{2 m}$
or $A=8-\frac{8}{m}-2 m$
$\therefore \frac{d A}{d m}=\frac{8}{m^{2}}-2$
and $\frac{d^{2} A}{d m^{2}}=\frac{-16}{m^{3}}$
Min/Max when $\frac{d A}{d m}=0$
i.e. $0=\frac{8}{m^{2}}-2$
or $0=8-2 m^{2}$
$\therefore 2 m^{2}=8$
$m^{2}=4$
so $m= \pm 2$
at $m=2$
$\frac{d^{2} A}{d m^{2}}=\frac{-16}{2^{3}}$
<0 ccd \Rightarrow max t.p.
at $m=-2$
$\frac{d^{2} A}{d m^{2}}=\frac{-16}{(-2)^{3}}$
$>0 \mathrm{ccu} \Rightarrow$ min t.p.
$\therefore m=-2$ is the gradient that
gives the least area for $\triangle A O B$

