7	0 * 0 /
Ì	* 35 *
	♠ ★ 8
9	
FABER EST	FORTUNAE
	SUAE QUISQUE

Name: _			 	· · · · · · · · · · · · · · · · · · ·
Teacher:			 	
Class:		***********	 	

FORT STREET HIGH SCHOOL

2009

PRELIMINARY SCHOOL CERTIFICATE COURSE ASSESSMENT TASK 3: FINAL PRELIMINARY EXAMINATION

Mathematics Extension I

TIME ALLOWED: 1½ HOURS

Outcomes Assessed	Questions	Marks
Demonstrates appropriate mathematical techniques algebra, equations	1	
and graphs.		
Manipulates algebraic expressions to solve problems from the topic	2	
areas of calculus and circle geometry.		
Applies appropriate techniques to solve problems from the topic areas	3	
of co-ordinate geometry, plane geometry and 3D trigonometry.		
Applies appropriate techniques to solve problems in trigonometry.	4	
Applies appropriate techniques to solve problems in quadratics, locus	5	
and polynomials.		

Question	1	2	3	4	5	Total	%
Marks	/17	/13	/15	/15	/15	/75	

Directions to candidates:

- Attempt all questions
- The marks allocated for each question are indicated
- All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work.
- Board approved calculators may be used
- Each new question is to be started in a new booklet

2009 Final Preliminary Exam.

Question 1 (17 marks)

		marks
a.	Factorise $3x^2 - 5x - 2$	I
b.	Solve $ 2x - 3 > 5$	2
c.	Find the values of a and b given that $(ax-3)^2 + b = 4x^2 - 12x + 15$	2
d.	A weight oscillates up and down at the end of an elastic string. Its depth below the point of suspension, t seconds after it starts, is $(12+3\cos 2\pi t)$ cm. At what time will its depth be 9cm?	2
e.		
	i. What is the period of $y = 3 + \sin 2x$	
	ii. What is the amplitude of $y = 3 + \sin 2x$	
	iii. Draw a neat sketch of $y = 3 + \sin 2x$ where $0 \le x \le 2\pi$	
f.	Draw a sketch of the function $f(x) = \frac{1}{x^2 - 1}$, stating the domain and range	4
g.	Solve $\frac{4x}{x+2} \le 1$	3

Question 2 (13 marks)

iesii	ion 2 (1	3 marks)	
			marks
a.		terval AB has end points $A(-4,1)$ and $B(8,7)$. Find the coordinates of the P that divides the interval AB internally in the ratio 1:3	2
b.	Differ	entiate with respect to x	8
	i.	$y = \sqrt{x^2 + 5}$	
	ii.	$y = \frac{1}{2x^3}$	
	iii.	$y = 2x\sqrt{x}$	
	iv.	$y = \frac{x - 3}{\sqrt{x}}$	

A circle through the points P, A and R cuts RS produced at B. Prove that $AB \parallel SQ$.

Question 3 (15 marks)

marks

3

- a. A(2,2), B(-2,-1), C(2,-1) are the vertices of a triangle and E is the points (1,0)
 - i. Show that the equation of AB is 3x 4y + 2 = 0

2

ii. D is the foot of the perpendicular from E(1,0) to AB. Find the equation of ED

2

iii. Find the coordinates of D.

2

b. Use the k method to find the equation of the straight line through the point (-4,-1) that passes through the intersection of the line 2x + y - 1 = 0 and 3x + 5y + 16 = 0.

2

c. Two lighthouses X and Y, 12 kilometres apart observe a ship S, at the same instant. X and Y are on a north-south line. From X, the ship is on a bearing of 105° and from Y the bearing of the ship is 058°

Copy the diagram onto your own paper.

i. Show that $\angle XSY = 47^{\circ}$

ii. Find, correct to one decimal place the distance of the ship from the nearer lighthouse.

1

d. AB and CD are towers of equal height (h). CD is due north of AB. From a point P on the same horizontal plane as the feet B and D of the towers, and bearing due east of the tower AB, the angles of elevation of A and C, the tops of the towers, are 47° and 31° respectively. If the distance between the towers is 88m, find the height of the tower to the nearest metre.

Question 4 (15 marks)

a. Solve $\cos 2\alpha = \frac{1}{2}$, where $0 \le \alpha \le 2\pi$ b.

i. Prove that
$$\frac{\sin 2x}{1-\cos 2x} = \cot x$$

- ii. Hence, or otherwise, obtain a value for $\cot 67\frac{1}{2}^{\circ}$ (Rationalise the denominator)
- c. Find the general solution of the equation $\cos\left(x \frac{\pi}{4}\right) = -\frac{1}{2}$.
- d. Express $7\cos\theta \sin\theta$ in the form $R\cos(\theta + \alpha)$ where R > 0 and $0 \le \alpha \le 360$. Hence solve the equation $7\cos\theta - \sin\theta = 5$ for $0 \le \theta \le 360$

Question 5 (15 marks)

iii. $\alpha^{-1} + \beta^{-1} + \gamma^{-1}$

		marks	
a.	Find the coordinates of the vertex and the focus, and the equation of the directrix of the parabola with equation $x^2 - 10x - 16y - 7 = 0$	5	
b.	Factor and sketch the polynomial $P(x) = x^4 - x^3 - 19x^2 - 11x + 30$, indicating all intercepts with the axes.	5	~
c.	If α, β, γ are the roots of the equation $2x^3 + 5x - 3 = 0$, find the values of		•
	i. $\alpha + \beta + \gamma$	1	
	ii. $\alpha^2 + \beta^2 + \gamma^2$	2	

2

_	Q1		
			(x+1)(x-2)
	1	b. 2	x – 3 > 5
		2x	$-3 > 5 \qquad \qquad -(2x-3) > 5$
			> 8 $2x-3 < -5$
Ì		<i>x</i> >	
-			x < -1
	(c.	a^{2}
-			$(x-3)^2 \equiv 4x^2 - 12x + 15$
			$x^2 - 6ax + 9 + b \equiv 4x^2 - 12x + 15$
-			= 2 .
1			b = 15
)	emma	<i>b</i> =	: 6
		d. 9 =	$=12+3\cos 2\pi t$
			$=3\cos 2\pi t$
			$=\cos 2\pi t$
			$=2\pi t$
		t =	$\frac{1}{2}s$
	, ε	€.	
	İ	T =	$=\pi$
	Ĩ	<i>a</i> =	$\cdot 1$
	"		
	_		
1	C	.	A
		5	- 1
		,	
		4	
		•	T
		3	
		L	
		1	
			$t \rightarrow \pi \rightarrow 3\pi \rightarrow t \rightarrow 7\pi \rightarrow 7\pi \rightarrow 7\pi \rightarrow 7\pi \rightarrow 7\pi \rightarrow 7\pi \rightarrow 7\pi$
			1 2

1 mark for the correct shape of the graph 1 mark for the correct asymptotes and y intercept

Domain: All real x, $x \neq \pm 1$

Range: $-1 \ge y > 0$

$$4x(x+2) \le (x+2)^{2}$$

$$0 \le (x+2)^{2} - 4x(x+2)$$

$$0 \le (x+2)(-3x+2)$$

$$(x+2)(3x-2) \le 0$$

 $-2 < x \le \frac{2}{3}$

Q2

$$x = \frac{mx_2 + nx_1}{m + n}$$

$$y = \frac{my_2 + ny_1}{m + n}$$

$$x = \frac{1(8) + 3(-4)}{4}$$

$$y = \frac{1(7) + 3(1)}{4}$$

$$x = \frac{-4}{4}$$

$$x = \frac{-4}{4} \qquad y = \frac{10}{4}$$

$$(-1,2\frac{1}{2})$$

b.

i.
$$y' = \frac{1}{2}(x^2 + 5)^{-\frac{1}{2}}.2x = \frac{x}{\sqrt{x^2 + 5}}$$

ii.

$$y = \frac{1}{2}x^{-3}$$

$$y' = -\frac{3}{2}x^{-4} = -\frac{3}{2x^4}$$

$$y = 2x\sqrt{x} = 2x^{\frac{3}{2}}$$

$$y' = 2.\frac{3}{2}x^{\frac{1}{2}} = 3\sqrt{x}$$

iv.

$$y' = \frac{\sqrt{x} \cdot 1 - (x - 3) \frac{1}{2} x^{-\frac{1}{2}}}{x}$$

$$= \frac{\sqrt{x} - \frac{x - 3}{2\sqrt{x}}}{x}$$

$$= \frac{x + 3}{2x\sqrt{x}}$$

c.

$$\angle BRP = \angle BAP$$
 (angles at the circ. subtended by the same arc)

$$\angle SRP = \angle SQA$$
 (angles at the circ. subtended by the same arc)

$$\angle BAP = \angle SQA$$

$$\angle BAP$$
 AND $\angle SQA$ are corresponding angles

$$\therefore BA \parallel SQ$$

Q3

i.
$$m = \frac{-1-2}{-2-2} = \frac{3}{4}$$

$$y-2=\frac{3}{4}(x-2)$$

$$4y - 8 = 3x - 6$$

$$0 = 3x - 4y + 2$$
...(1)

ii.

$$m=-\frac{4}{3}$$

$$y - 0 = -\frac{4}{3}(x - 1)$$

$$4x + 3y - 4 = 0$$
....(2)

$$(1) \times 4 - (2) \times -3$$

$$12x - 16y + 8 - 12x - 9y + 12 = 0$$

$$-25y + 20 = 0$$

$$y = \frac{20}{25} = \frac{4}{5}$$

$$4x + 3\left(\frac{4}{5}\right) - 4 = 0$$

$$4x = 4 - \frac{12}{5}$$

$$4x = \frac{8}{5}$$

$$x = \frac{8}{20} = \frac{2}{5}$$

b.
$$(2x+y-1)+k(3x+5y+16)=0$$

at
$$(-4,-1)$$

$$(2(-4)-1-1)+k(3(-4)+5(-1)+16)=0$$

$$-10-k=0$$

$$k = -10$$

$$(2x+y-1)-10(3x+5y+16=0$$

$$2x + y - 1 - 30x - 50y - 160 = 0$$

$$-28x - 49y - 161 = 0$$

$$4x + 7y + 23 = 0$$

i.
$$\angle YXS = 75^{\circ}$$
 (supplementary angles)

$$\angle XSY = 180 - 75 - 58 = 47^{\circ}$$
 (angle sum of a triangle)

$$\frac{12}{\sin 47} = \frac{SY}{\sin 75}$$

$$SY = \frac{12}{\sin 47} \times \sin 75$$

$$SY = 15.85$$

$$\frac{12}{\sin 47} = \frac{5X}{\sin 58}$$
$$SX = \frac{12}{\sin 47} \times \sin 58 \qquad \checkmark$$

$$SX = 13.91$$

OR I mark for correct answer and a mark

for a reason

$$\tan 47 = \frac{h}{PB} \qquad \tan 31 = \frac{h}{PD}$$

$$PB = \frac{h}{\tan 47} \qquad PD = \frac{h}{\tan 31}$$

$$88^2 + PB^2 = PD^2$$

$$88^2 = \left(\frac{h}{\tan 31}\right)^2 - \left(\frac{h}{\tan 47}\right)^2$$

$$88^2 = h^2 \left(\frac{1}{\tan^2 31} - \frac{1}{\tan^2 47} \right)$$

$$88^2 = h^2 \left(\cot^2 31 - \cot^2 47 \right)$$

$$h^2 = \frac{88^2}{\tan^2 59 - \tan^2 43}$$

$$h = 64$$

Q4

$$\cos 2\alpha = \frac{1}{2}$$

$$0 \le \alpha \le 2\pi$$

$$0 \le 2\alpha \le 4\pi$$

$$2\alpha = \frac{\pi}{3}, \frac{5\pi}{3}, \frac{7\pi}{3}, \frac{11\pi}{3}$$

$$\alpha = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6}$$

$$LHS = \frac{\sin 2x}{1 - \cos 2x}$$
$$2\sin x \cos x$$

$$1-2\cos^2 x$$

$$=\frac{2\sin x\cos x}{2-2\cos^2 x}$$

$$= \frac{2\sin x \cos x}{2\sin^2 x}$$

$$2\sin^2 x$$

$$= \frac{\cos x}{\sin x}$$

$$= \cot x = RHS$$

ii.

$$\cot 67 \frac{1}{2} \circ = \frac{\sin 2\left(67 \frac{1}{2}\right)}{1 - \cos\left(67 \frac{1}{2}\right)}$$

$$= \frac{\sin 135}{1 - \cos 135}$$

$$= \frac{\frac{1}{\sqrt{2}}}{1 + \frac{1}{\sqrt{2}}}$$

$$= \frac{1}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2} + 1}$$

$$= \frac{1}{\sqrt{2} + 1} \times \frac{\sqrt{2} - 1}{\sqrt{2} - 1}$$

$$= \sqrt{2} - 1$$

c.
$$\cos\left(x - \frac{\pi}{4}\right) = -\frac{1}{2}$$

$$\left(x - \frac{\pi}{4}\right) = 2n\pi \pm \frac{2\pi}{3}$$

$$x = 2n\pi \pm \frac{2\pi}{3} + \frac{\pi}{4}$$

$$x = 2n\pi + \frac{11\pi}{12}, 2n\pi - \frac{5\pi}{12}$$

d.

$$R = \sqrt{7^2 + 1^2} = \sqrt{50} = 5\sqrt{2}$$

$$\tan \alpha = \frac{1}{7} = 8.1^{\circ}$$

$$5\sqrt{2}\cos(x + 8.1) = 5$$

$$\cos(x + 8.1) = \frac{1}{\sqrt{2}}$$

$$x + 8.1 = 45$$

$$x = 36.9^{\circ}$$

Q5

a.

$$x^{2} - 10x - 16y - 7 = 0$$

$$x^{2} - 10x + 25 = 16y + 7 + 25$$

$$(x - 5)^{2} = 16y + 32$$

$$(x - 5)^{2} = 16(y + 2)$$

