## **Question 1 (Start a new Booklet)**

- **a)** Solve the inequality  $\frac{x-1}{x+1} \ge 2$  [3]
- b) The point C (-6,1) divides the interval AB externally in the ratio 3:1. If
  A has co-ordinates (0,4) find the co-ordinates of B. [3]
- c) From a cliff 100 metres high, the straight line distance to the horizon is 36 kilometres. Calculate the radius of the earth to the nearest kilometre. [3]



- d) Find the obtuse angle between the lines  $\frac{x}{7} + \frac{y}{5} = 1$  and 2x 3y + 4 = 0 to the nearest minute. [3]
- e) The diagram shows a circle with a chord PQ and another chord RS which is parallel to the tangent at Q. Prove that the chord PQ bisects  $\angle$  RPS. [4]



(16 marks)

## Question 2 (Start a new Booklet)

- a) Consider the polynomial  $P(x) = x^3 5x + c$ i) Find the value of c if x + 2 is a factor of P(x).
  - ii) For this value of c, find Q(x) such that P(x) = (x+2) Q(x). [2]
- b) If y = P(x) is an odd polynomial passing through (8, -3) find the remainder when y = P(x) is divided by (x+8). [2]
- c) The quadratic equation  $x^2 + 6x + c = 0$  has two real roots. These roots have opposite signs and differ by 2n, where  $n \neq 0$ .
  - i) Show that  $n^2 = 9 c$ . [3]
  - ii) Find the set of all possible values of n. [2]
- **d**) If  $\alpha$ ,  $\beta$ ,  $\gamma$  are the roots of the equation  $x^3 + 2x^2 x 5 = 0$  find
  - i)  $\alpha + \beta + \gamma$  [1]
  - ii)  $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$  [2]

iii) 
$$\alpha^2 + \beta^2 + \gamma^2$$
. [2]

## (15 marks)

[1]

## Question 3 (Start a new Booklet)

a) Prove that 
$$\frac{\sec^2 x}{\tan x} = \frac{1}{\sin x \cos x}$$
. [2]

page 3

(13 marks)

[2]

- b) Find the exact value of  $\cos 15^{\circ}$ .
- c) The diagram shows a mountain of height *h* metres. From a point *P* due south the angle of elevation of summit *R* is found to be  $14^{\circ}$ . From another point *Q*, 7000 metres due east of *P*, the elevation of summit *R* is found to be  $10^{\circ}$ .



| i)  | Copy the diagram into your booklet and mark on all the     |     |  |  |
|-----|------------------------------------------------------------|-----|--|--|
|     | information given.                                         | [1] |  |  |
| ii) | Calculate the height of the mountain to the nearest metre. | [4] |  |  |
|     |                                                            |     |  |  |

d)

| i)  | If $t = tan \frac{x}{2}$ write down expressions for sin x and cos x in   |     |  |  |
|-----|--------------------------------------------------------------------------|-----|--|--|
|     | terms of t.                                                              | [1] |  |  |
| ii) | Hence solve $4\cos x - 7\sin x = 1$ for $0^0 \le x \le 360^0$ correct to |     |  |  |
|     | the nearest minute.                                                      | [3] |  |  |

| Question 4 (Start a new Booklet) (12 m |                                     |                                                                                                                                                                    |     |  |
|----------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|
| a)                                     | i)                                  | Show that $\sin 3\theta = 3\sin \theta - 4\sin^3 \theta$ .                                                                                                         | [2] |  |
|                                        | ii)                                 | Hence solve the equation $3\sin\theta - 4\sin^3\theta = -1$ for $0 \le \theta \le 2\pi$ .                                                                          | [2] |  |
| b)                                     | Factorise<br>to 2 cos 2<br>measure. | $2\cos x \sin x - 2\sin x - \sqrt{3}\cos x + \sqrt{3}$ . Hence find the solutions $x\sin x - 2\sin x - \sqrt{3}\cos x + \sqrt{3} = 0$ in general form using radian | [3] |  |
| c)                                     | For the ex                          | xpression $6\cos x - 8\sin x$                                                                                                                                      |     |  |
|                                        | i)                                  | Express this in the form $R\cos(x+\alpha)$ where $\alpha$ is an acute angle.                                                                                       | [2] |  |
|                                        | Use this r<br>ii)                   | The maximum value of $6\cos x - 8\sin x$ .                                                                                                                         | [1] |  |
|                                        | iii)                                | the value of x to the nearest minute, for $0^{\circ} \le x \le 360^{\circ}$ , when $6\cos x - 8\sin x = 5$ .                                                       | [2] |  |



$$\frac{(4+4)(2+1)}{2} = x^{2} - \frac{2}{2} + 10 + C = C \quad as \quad f(x) \quad ts \quad adapton \quad adapton$$



$$\frac{2}{2} \frac{2}{2} \frac{2}$$