Question 1 (Start a new Booklet)

a) Solve the inequality $\frac{x-1}{x+1} \geq 2$
b) The point $\mathrm{C}(-6,1)$ divides the interval AB externally in the ratio $3: 1$. If A has co-ordinates $(0,4)$ find the co-ordinates of B .
c) From a cliff 100 metres high, the straight line distance to the horizon is 36 kilometres. Calculate the radius of the earth to the nearest kilometre.

d) Find the obtuse angle between the lines $\frac{x}{7}+\frac{y}{5}=1$ and $2 x-3 y+4=0$ to the nearest minute.
e) The diagram shows a circle with a chord PQ and another chord RS which is parallel to the tangent at Q . Prove that the chord PQ bisects $\angle \mathrm{RPS}$.

Question 2 (Start a new Booklet)

a) Consider the polynomial $P(x)=x^{3}-5 x+c$
i) Find the value of c if $x+2$ is a factor of $P(x)$.
ii) For this value of c , find $Q(x)$ such that $P(x)=(x+2) \cdot Q(x)$
b) If $y=P(x)$ is an odd polynomial passing through $(8,-3)$ find the remainder when $y=P(x)$ is divided by $(x+8)$.
c) The quadratic equation $x^{2}+6 x+c=0$ has two real roots. These roots have opposite signs and differ by $2 n$, where $n \neq 0$.
i) Show that $n^{2}=9-c$.
ii) Find the set of all possible values of n.
d) If α, β, γ are the roots of the equation $x^{3}+2 x^{2}-x-5=0$ find
i) $\alpha+\beta+\gamma$
ii) $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$
iii) $\alpha^{2}+\beta^{2}+\gamma^{2}$.

Question 3 (Start a new Booklet)

a) Prove that $\frac{\sec ^{2} x}{\tan x}=\frac{1}{\sin x \cos x}$.
b) Find the exact value of $\cos 15^{0}$.
c) The diagram shows a mountain of height h metres. From a point P due south the angle of elevation of summit R is found to be 14^{0}. From another point $Q, 7000$ metres due east of P, the elevation of summit R is found to be 10°.

i) Copy the diagram into your booklet and mark on all the information given.
ii) Calculate the height of the mountain to the nearest metre.
d)
i) If $t=\tan \frac{x}{2}$ write down expressions for $\sin x$ and $\cos x$ in terms of t.
ii) Hence solve $4 \cos x-7 \sin x=1$ for $0^{0} \leq x \leq 360^{\circ}$ correct to the nearest minute.

Question 4 (Start a new Booklet)

a)
i) Show that $\sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta$.
ii) Hence solve the equation $3 \sin \theta-4 \sin ^{3} \theta=-1$ for $0 \leq \theta \leq 2 \pi$
b) Factorise $2 \cos x \sin x-2 \sin x-\sqrt{3} \cos x+\sqrt{3}$. Hence find the solutions to $2 \cos x \sin x-2 \sin x-\sqrt{3} \cos x+\sqrt{3}=0$ in general form using radian measure.
c) For the expression $6 \cos x-8 \sin x$
i) Express this in the form $R \cos (x+\alpha)$ where α is an acute angle.

Use this relationship to find
ii) the maximum value of $6 \cos x-8 \sin x$.
iii) the value of x to the nearest minute, for $0^{\circ} \leq x \leq 360^{\circ}$, when $6 \cos x-8 \sin x=5$.

Question Q.
a) ${ }_{1} \cdot R(x)=x^{3}-5 x+c$

$$
P(-2)=-8+10+c=0 \text { as }(x+2) \text { is }
$$

$$
\therefore C=-2
$$

ii)

$$
\left.\begin{array}{c}
\therefore P(x)=x^{3}-5 x-2 \\
x+2 \frac{x^{2}-2 x-1}{x^{3}-5 x-2} \\
\frac{x^{3}+2 x^{2}}{-2 x^{2}-5 x-2} \\
\frac{-2 x^{2}-4 x}{-x-2} \\
\frac{-x-2}{0}
\end{array}\right] .
$$

(b) $y=R(x)$
thiro' $(8,-3) \Rightarrow P(8)=-3$
for areca fo $P(x)=-P(-x)$
ODD : reflected on th Hence: Orgies
$y=3$
relationship

(e) $x^{2}+6 x+c=0$.

$$
\therefore a=1, b=6, \quad c=c
$$

let the roots be $\alpha, \alpha+2 n$
bow, $\alpha+\alpha+2 m=\frac{-b}{a}$

$$
\begin{aligned}
2 \alpha+2 n & =-6 \\
\alpha+n & =-3 \\
\alpha & =-3-n
\end{aligned}
$$

OR use Remainder theorem:

Q2 (c) (cos+1d) $x^{2}+6 x+c=0$
Also $\alpha(\alpha+2 n)=\frac{c}{a}$

$$
\begin{aligned}
& (-3-n)(-3-n+2 n)=c \\
& (-3-n)(-3+n)=c \\
& 9-n^{2}=c \\
& -\frac{n^{2}=9-c}{c=9-n^{2}} \text { as requd. }
\end{aligned}
$$

ii) Since roots are opposite in sign \Rightarrow product is -be.
上 $C<0$

$$
\because q-n^{2}<0
$$

$(3-n)(3 m)<0$
$\{n: n<-3, n>3$.

$$
n= \pm \sqrt{9-c}
$$

(d)

$$
\begin{aligned}
& x^{3}+2 x^{2}-x-5=0 \\
& a=1 \quad b=2 \quad c=-1 \quad d=-5
\end{aligned}
$$

i) $\alpha+\beta+\gamma=\frac{-b}{a}$

$$
=-2
$$

$$
\text { ii) } \begin{aligned}
& \frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma} \\
= & \frac{\beta \gamma+\alpha \gamma+\alpha \beta}{\alpha \beta \gamma} \\
= & \frac{-1}{5}
\end{aligned}
$$

(from above)
iii) $\alpha^{2}+\beta^{2}+\gamma^{2}$

$$
\begin{aligned}
& =(\alpha+\beta+\gamma)^{2}-\alpha(\alpha \beta+\beta \gamma+\alpha \gamma) \\
& =4-2 \times-1 \\
& =6
\end{aligned}
$$

onesmon 3

$$
\begin{aligned}
& \Rightarrow \frac{\sec ^{2} x}{\tan x}=\frac{1}{\sin x \cos x} \\
& \text { L.H.S }=\frac{1}{\cos ^{2} x} \times \frac{1}{\tan x} \\
& \begin{array}{l}
=\frac{1}{\cos ^{2} x} \times \\
=\frac{1}{\cos x \sin x}
\end{array} \\
& =R H S \text {. }
\end{aligned}
$$

$>\cos 15^{\circ}=\cos \left(45^{\circ}-30^{\circ}\right)$

$$
\left.\begin{array}{l}
=\cos 45^{\circ} \cos 30^{\circ}+\sin 45 \sin 30 \\
=\frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}} \times \frac{1}{2} \\
=\frac{\sqrt{3}+1}{2 \sqrt{2}} \\
=\frac{\sqrt{6}+\sqrt{2}}{4}
\end{array}\right\} \begin{aligned}
& \left(\frac{\sqrt{2}}{\sqrt{2}}\right) \\
& =
\end{aligned} \quad \begin{aligned}
& \frac{\sqrt{3}}{2 \sqrt{2}}+\frac{1}{2 \sqrt{2}} \\
& =\frac{(\sqrt{3}+1) \sqrt{2}}{2 \sqrt{2}} \frac{\sqrt{6}+\sqrt{2}}{4}
\end{aligned}
$$

In $\triangle R Q S$
 diagram.

In $\triangle P Q S$

$$
\begin{aligned}
& Q s^{2}=7000^{2}+P s^{2} \\
& \frac{h^{2}}{\tan ^{2} 10}=7000^{2}+\frac{h^{2}}{\tan ^{2} 14} \\
& \frac{h^{2}}{\tan ^{2} 10}-\frac{h^{2}}{\tan ^{2} 14}=7000^{2} \\
& h^{2}\left(\frac{1}{\tan ^{2} 10}-\frac{1}{\tan ^{2} 14}\right)=7000^{2}
\end{aligned}
$$

$$
\begin{aligned}
& h^{2}=\frac{7000^{2}}{\tan ^{2} 10-7} \\
& h=1745 \\
& \text { of mountan is }
\end{aligned}
$$

$$
1746 \mathrm{~m} \text { (nearest m). answer }
$$

(d) $t=\tan \frac{x}{2}$

\therefore the heeght of

 acute $\frac{x}{3}=71034$ 多 10

$$
\begin{array}{ll}
\frac{x}{x}=71034 & \\
\frac{x}{3}=180-794^{\prime} & \tan \frac{x}{2}=\frac{1}{5} \\
\frac{x}{1}=108^{\circ} 26^{\circ} \\
\frac{x}{2}=210^{\circ} 52^{\prime} & \frac{x}{2}=11^{\circ} 19^{\prime} \\
& 0 \sim-22^{\circ} 21
\end{array}
$$

$$
5 t^{2}+14 t-3=6
$$ expressics for PS:QS.

Question 4
${ }^{\prime}{ }^{\prime}(1) \sin 3 s=3 \sin \theta-4 \sin ^{3} \theta$

$$
\text { L.H.S }=\sin (2 \theta+\theta)
$$

$$
=\sin 2 \theta \cos \theta+\sin \theta \cos 2 \theta
$$

$$
=2 \sin \theta \cos ^{2} \theta+\sin \theta\left(\cos ^{2} \theta\right)
$$

$$
=2 \sin \theta \cos ^{2} \theta+\sin \theta\left(1-\sin ^{2} \theta\right)
$$

$$
\begin{aligned}
& =2 \sin \theta\left(1-\sin ^{2} \theta\right)+\sin ^{3} \theta \\
& -\sin ^{3} \theta-\sin ^{3} \theta \\
& =2 \sin \theta-2 \sin 3 \theta+\sin \theta
\end{aligned}
$$

$$
=3 \sin \theta-4 \sin ^{3} \theta
$$

$$
-2 \sin ^{3} \theta
$$

$$
=R H S
$$

i)

$$
\begin{aligned}
3 \sin \theta-4 \sin 3 \theta & =-1 \\
\sin 3 \theta & =-1 \\
3 \theta & =\frac{3 \pi}{2}, \frac{7 \pi}{2}, \frac{11 \pi}{2} \\
\theta & =\frac{\pi}{2}, \frac{7 \pi}{6}, \frac{11 \pi}{6}
\end{aligned}
$$

3) $2 \cos x \sin x-2 \sin x-\sqrt{3} \cos x+\sqrt{3}$

$$
\begin{aligned}
& =2 \sin x(\cos x-1)-\sqrt{3}(\cos x-1) \\
& =(2 \sin x-\sqrt{3})(\cos x-1)
\end{aligned}
$$

$-(2 \sin x-\sqrt{3})(\cos x-1)=0$.
$2 \sin x-\sqrt{3}=0 \quad \cos x=1$

$$
\sin x=\frac{\sqrt{3}}{2}
$$

$\sin x=\sin \frac{\pi}{3}$
$x=n \pi+(-1)^{n} \frac{\pi}{3}$

$$
\cos x=0,2 \pi
$$

$x=2 n \pi$.

Question $4($ contd)

$$
\begin{aligned}
&(1)(1) 6 \cos x-8 \sin x \equiv l \cos (x+\alpha) \\
& R=\sqrt{6^{2}+8^{2}} \\
&=10 . \\
& \therefore 6 \cos x-8 \sin x \equiv 10 \cos (x+\alpha) \\
& \frac{3}{5} \cos x-\frac{4}{5} \sin x=\cos (x+\alpha) \\
& \equiv \cos x \cos x-\sin \alpha \cos x
\end{aligned}
$$

$$
\therefore \cos \alpha=\frac{3}{5}
$$

$$
\left.\begin{array}{rl}
\cos \alpha & =\frac{3}{5} \\
\sin \alpha & =\frac{4}{5}
\end{array}\right\} \Rightarrow \tan \alpha=\frac{4}{3}
$$

$$
\alpha=\frac{\frac{1}{3}}{3}{ }^{\circ} 8^{1} V
$$

$$
\therefore 6 \cos x-8 \sin x \equiv 10 \cos \left(x+58^{\circ}\right) \psi
$$

ii) Max value $=10$
iii) $6 \cos x-8 \sin x=5$

$$
\therefore 10 \cos \left(x+53^{\circ} 8^{\prime}\right)=5
$$

$$
\cos \left(x+53^{\circ} f^{\prime}\right)=\frac{1}{2} .
$$

acute $\left(x+53^{\circ} 8^{\prime}\right)=60^{\circ}$

$$
\begin{aligned}
& x+53^{\circ} 8^{\prime}=60^{\circ}, 300^{\circ} \\
& x=6^{\circ} 52^{\prime}, 246^{\circ} 52^{\prime}
\end{aligned}
$$

