

GOSFORD HIGH SCHOOL

2007

PRELIMINARY HIGHER SCHOOL CERTIFICATE

ASSESSMENT TASK 4 Yearly Examination MATHEMATICS – EXTENSION 1

General Instructions:

- Reading time 5minutes
- Working time 2 Hours
- Write using black or blue pen.
- Board-approved calculators may be used
- All necessary working should be shown in every question.

Total marks: - 72

- Attempt Questions 1 6
- All Questions are of equal value

QUESTION 1 (12 Marks)

(a) Solve $\frac{5}{x-3}$ < 7 and graph the solution on a number line

- 3
- (b) Find the acute angle between the lines 3x + 2y 7 = 0 and y = 4x 5 to the nearest degree
- 3
- (c) Find the coordinates of the point that divides the interval A(2, 6) and B(9, 3) externally in the ratio 5:2
- 3

(d) (i) Show that $\frac{1}{a^2 + ab} + \frac{1}{b^2 + ab} = \frac{1}{ab}$

2

(ii) Hence express $\frac{1}{7}$ in the form $\frac{1}{a} + \frac{1}{b}$ where a and b are positive integers

1

END OF QUESTION 1

QUESTION 2 (Start a New Page) (12 Marks)

(a) Calculate the remainder when $P(x) = x^3 + 2$ is divided by x - 1

1

(b) The polynomial $P(x) = x^3 + ax + 12$ has a factor (x + 3). Find the value of a.

2

(c) Find the quotient Q(x) and the remainder, R(x), when the polynomial $P(x) = x^4 - x^2 + 1$ is divided by $x^2 + 1$

3

- (d) The point P(3, 7) lies on the graph of the odd polynomial function y = P(x). Find, with reasons,
 - (i) the remainder when P(x) is divided by (x-3)

1

(ii) the remainder when P(x) is divided by (x+3)

1

(e) Solve $x^3 - 4x^2 - x + 4 = 0$

2

(f) If α , β and γ are roots of the cubic equation $5x^3 + 7x^2 - 3x - 4 = 0$, find the value of $\alpha^2 + \beta^2 + \gamma^2$

2

END OF QUESTION 2

QUESTION 3 (Start a New Page) (12 Marks)

(a) E A O D D

ABCD is a quadrilateral inscribed in a circle with centre O. Reflex \angle BOD = 240°. Find, giving reasons

(i) the size of ∠BAD	2
(ii) the size of ∠BCD	. 2
(iii) the size of ∠FBD	2

In the diagram (not to scale), AC = BD and AC // BD. Prove DF = DB

In the diagram (not to scale), AB = 41 cm, AC = 9 cm and BC = 40 cm Prove AB is the diameter of the circle drawn

4

2

QUESTION 4 (Start a New Page) (12 Marks)

(a) By using an expression for $tan(\alpha + \beta)$, find the exact value of tan 105°

.

2

(b) Prove that $\frac{\sin 2\theta}{1 + \cos 2\theta} = \tan \theta$

3

(c) Solve the equation $\sqrt{3} \sin \theta - \cos \theta = 1$ for $0 \le \theta \le 2\pi$

- 4
- (d) A ship, S, is sailing on a straight course for an oil rig, R, on a bearing of 050°. At the same time, a lighthouse, L, is sighted in a direction of 012°. The charts indicate that the bearing from the rig to the lighthouse is 340°, and a distance of 18 km from it.
- 1

(i) Draw a diagram showing the above information

- 1
- (ii) Find the distance from the ship to the oil rig correct to the nearest metre

2

END OF QUESTION 4

QUESTION 5 (Start a New Page) (12 Marks)

(a) Show $\frac{\sin 2\theta}{\sin \theta} - \frac{\cos 2\theta}{\cos \theta} = \sec \theta$

2

(b) Sketch f(x) = ||x-2|-1|

2

(c) Using First Principles, find the derivative of

2

$$f(x) = 4x^2 + 5$$

__

(d) For the curve $y = x^{2}(x^{2} - 1)$,

(i) Find the derivative $\frac{dy}{dx}$

1

(ii) Hence or otherwise, find the equation of the normal at the point (1, 0)

2

- (e) The straight line joining the centre O, of a circle to an external point T, cuts the circumference of the circle at Z. TZ = 32 cm and the tangent to the circle from T is 40 cm long.
- 1

(i) Draw a diagram to represent this information

2

(ii) Calculate the radius of the circle giving reasons for your answer

END OF QUESTION 5

QUESTION 6 (Start a New Page) (12 Marks)

(a) Solve for *x*:
$$|x^2 - 5| \le 5x + 9$$

- 2
- (b) The equation $x^3 + px^2 + qx + pq = 0$, where $p \neq 0$ and $q \neq 0$ has 3 real roots α , β and γ .
 - (i) By considering the relationships between the roots and the coefficients of the equation, show that $(\alpha + \beta + \gamma) \left(\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} \right) = 1$
 - (ii) Show that -p is a root of the equation. Hence show that q<0.
- (c) The quadratic equation $x^2 x + k = 0$, where k is a real number has 2 distinct, positive real roots.
 - (i) Show that $0 < k < \frac{1}{4}$
 - (ii) Let the two roots be α and β . Show that $\alpha^2 + \beta^2 = 1 2k$ and deduce that $\frac{1}{2} < \alpha^2 + \beta^2 < 1$

END OF EXAMINATION

PRELIMINARY EXTENSION 1 YEARLY SOLUTIONS 2007

OUESTION 1 (12 Marks)

(a) Solve $\frac{5}{1000}$ < 7 and graph the solution on a number line

Note: $x \neq 3$

For
$$x < 3$$

For x>3

$$5 > 7x - 21$$

$$5 < 7x - 21$$

$$\frac{26}{7} > x$$

$$\frac{26}{7} < x$$

$$x > \frac{26}{7}$$

Testing points

$$x \rightarrow 3^-$$

$$\frac{5}{x-3}$$
 <

$$x \to 3^{-}$$
 $\frac{5}{x-3} < 7$ $x \to \frac{26}{7}$ $\frac{5}{x-3} > 7$

$$x \rightarrow 3^+$$

$$\frac{5}{x-3} > 7$$

$$x \to 3^+$$
 $\frac{5}{x-3} > 7$ $x \to \frac{26^+}{7}$ $\frac{5}{x-3} < 7$

$$\therefore x < 3 \text{ and } x > \frac{26}{7}$$

(b) Find the acute angle between the lines 3x + 2y - 7 = 0 and y = 4x - 5 to the nearest degree

$$3x + 2y - 7 = 0$$

$$v = 4x - 3$$

Gradient =
$$\frac{-3}{2}$$

Gradient = 4

$$\tan\theta = \frac{m_1 - m_2}{1 + m_1 m_2}$$

$$\tan\theta = \frac{\frac{-3}{2} - 4}{1 + \frac{-3}{2} \times 4}$$

$$\tan \theta = \frac{11}{10}$$

$$\theta = 47.73^{\circ}$$

$$\theta = 48^{\circ}$$

(c) Find the coordinates of the point that divides the interval A(2, 6) and B(9, 3) externally in the ratio 5:2

The point (X,Y) which divides the interval in the ratio $r_1:r_2$ is given by

$$(X,Y) = \left(\frac{r_1x_2 + r_2x_1}{r_1 + r_2}, \frac{r_1y_2 + r_2y_1}{r_1 + r_2}\right)$$

$$(X,Y) = \left(\frac{5 \times 9 + -2 \times 2}{5 + -2}, \frac{5 \times 3 + -2 \times 6}{5 + -2}\right) \text{ Here } r_1 = 5 \text{ and } r_2 = -2 \text{ (externally)}$$

$$(X,Y) = (13\frac{2}{3},1)$$

(d) (i) Show that
$$\frac{1}{a^2 + ab} + \frac{1}{b^2 + ab} = \frac{1}{ab}$$

$$\frac{1}{1^2 + ab} + \frac{1}{b^2 + ab} = \frac{1}{ab}$$

3

1

$$LHS = \frac{1}{a^2 + ab} + \frac{1}{b^2 + ab}$$

$$LHS = \frac{1}{a(a+b)} + \frac{1}{b(a+b)}$$

$$LHS = \frac{(a+b)}{ab(a+b)}$$

$$LHS = \frac{1}{ab}$$

 $\therefore LHS = RHS$

(ii) Hence express
$$\frac{1}{7}$$
 in the form $\frac{1}{a} + \frac{1}{b}$ where a and b are positive integers

Choose factors of $7 \rightarrow 1$ and 7 as a and b (from above) and write in reverse

$$\frac{1}{1 \times 7} = \frac{1}{1^2 + 1 \times 7} + \frac{1}{7^2 + 1 \times 7}$$
$$= \frac{1}{8} + \frac{1}{56}$$

END OF QUESTION 1

QUESTION 2 (Start a New Page) (12 Marks)

(a) Calculate the remainder when $P(x) = x^3 + 2$ is divided by x - 1

$$R(1) = 1^3 + 2$$

$$R(1) = 3$$

3

$$R(-3) = (-3)^3 + a(-3) + 12$$

 $0 = -27 - 3a + 12$
 $0 = -3a - 15$
As $(x+3)$ is a factor, the remainder is 0 (i.e. $R(-3) = 0$)
 $a = -5$

(c) Find the quotient Q(x) and the remainder, R(x), when the polynomial $P(x) = x^4 - x^2 + 1$ is divided by $x^2 + 1$

$$x^{2} + 0x + 1 \overline{\smash)x^{4} + 0x^{3} - x^{2} + 0x + 1} \qquad \qquad \therefore Q(x) = x^{2} - 1$$

$$\underline{x^{4} + 0x^{3} + x^{2}}$$

$$-2x^{2} + 0x + 1$$

$$\underline{-2x^{2} + 0x - 2}$$

$$3$$

- (d) The point P(3, 7) lies on the graph of the odd polynomial function y = P(x). Find, with reasons,
- (i) the remainder when P(x) is divided by (x-3)

From the point (3,7) above, when x = 3, y = 7, therefore, R(3) = 7

(ii) the remainder when P(x) is divided by (x+3)

As the polynomial is odd, P(x) = -P(-x), therefore, R(-3) = -7

(e) Solve
$$x^3 - 4x^2 - x + 4 = 0$$

Firstly testing factors of 4 →

$$P(1) = 1^3 - 4(1)^2 - 1 + 4$$
 \Rightarrow $(x-1)$ is a factor and $x = 1$ is a solution

$$\frac{P(-1) = (-1)^3 - 4(-1)^2 - (-1) + 4}{P(-1) = 0} \Rightarrow (x+1) \text{ is a factor } x = -1 \text{ is a solution}$$

$$P(4) = 4^3 - 4(4)^2 - 4 + 4$$
 \Rightarrow $(x-4)$ is a factor $x = 4$ is a solution

$$\therefore (x+1)(x-1)(x-4) = x^3 - 4x^2 - x + 4$$

OR

$$x = -1,1,4$$

(f) If α , β and γ are roots of the cubic equation $5x^3 + 7x^2 - 3x - 4 = 0$, find the value of

$$\alpha^2 + \beta^2 + \gamma^2$$

$$\alpha^{2} + \beta^{2} + \gamma^{2} = (\alpha + \beta + \gamma)^{2} - \alpha\beta - \alpha\gamma - \beta\alpha - \beta\gamma - \gamma\alpha - \gamma\beta$$
$$\alpha^{2} + \beta^{2} + \gamma^{2} = (\alpha + \beta + \gamma)^{2} - 2(\alpha\beta + \alpha\gamma + \beta\gamma)$$

$$\alpha^2 + \beta^2 + \gamma^2 = \left(\frac{-b}{a}\right)^2 - 2\left(\frac{c}{a}\right)$$

$$\alpha^2 + \beta^2 + \gamma^2 = \left(\frac{-7}{5}\right)^2 - 2\left(\frac{-3}{5}\right)$$

$$\alpha^2 + \beta^2 + \gamma^2 = \left(\frac{49}{25}\right) + \frac{6}{5}$$

$$\alpha^2 + \beta^2 + \gamma^2 = \frac{79}{25}$$

2

1

1

END OF QUESTION 2

OUESTION 3 (Start a New Page) (12 Marks)

ABCD is a quadrilateral inscribed in a circle with centre O. Reflex \angle BOD = 240°. Find, giving reasons

(i) the size of ∠BAD

2

 $\angle BOD = 120^{\circ} (\angle \text{'s at a point given reflex } \angle BOD=240^{\circ})$ $\angle BAD = 60^{\circ}$ (\angle at centre = twice \angle at circumference on same arc)

(ii) the size of ∠BCD

2

2

 \angle BCD = 120° (given \angle BOD = 240°, \angle at centre = twice \angle at circumference on same arc)

(iii) the size of ∠FBD

2

 \angle FBD = \angle BAD (\angle between tangent and chord = \angle in alternate segment)

 $\therefore \angle FBD = 60^{\circ} (\angle BAD = 60^{\circ} \text{ from above})$

In the diagram (not to scale),

AC = BD and AC // BD. Prove DF = DB

4

ABCD is a //ogram (given 1 pair opp sides = and //)

 $\therefore \angle ACD = \angle ABD \text{ (opp } \angle \text{'s //ogram ABCD=)}$

ACDF is a cyclic quad (quad with all vertices on the circumference of same circle)

 $\angle BFD = \angle ACD$ (ext \angle cyc. quad. = \angle in alt seg.)

- $\therefore \angle BFD = \angle DBF (both = \angle ACD)$
- $\triangle DBF$ is isosc. (base \angle 's =)
- \therefore DF = DB (= sides opp = \angle 's of isosc \triangle DBF)

2

In the diagram (not to scale), AB = 41 cm, AC = 9 cm and BC = 40 cm Prove AB is the diameter of the circle drawn

$$AB^2 = 41^2$$
 $AC^2 + BC^2 = 40^2 + 9^2$
 $AC^2 + BC^2 = 1681$

$$AB^2 = 1681$$
 $AC^2 + BC^2 = AB^2$

:. ΔABC is a right angled triangle (square of hyp = sum of squares of other 2 sides)

 $\therefore \angle ACB = 90^{\circ} \text{ (opp hypotenuse)}$

:. AB is a diameter (\(\alpha \) at the circumference in a semi circle is 90°)

END OF QUESTION 3

QUESTION 4 (Start a New Page) (12 Marks)

(a) By using an expression for $tan(\alpha + \beta)$, find the exact value of tan 105°

$$\tan 105^{\circ} = \tan(60^{\circ} + 45^{\circ})$$

$$\tan 105^{\circ} = \frac{\tan 60^{\circ} + \tan 45^{\circ}}{1 - \tan 60^{\circ} \tan 45^{\circ}}$$

$$\tan 105^{\circ} = \frac{\sqrt{3} + 1}{1 - \sqrt{3}} \times \frac{1 + \sqrt{3}}{1 + \sqrt{3}}$$

$$\tan 105^{\circ} = \frac{3 + 1 + 2\sqrt{3}}{1 - 3}$$

$$\tan 105^{\circ} = \frac{4 + 2\sqrt{3}}{-2}$$

$$\tan 105^{\circ} = -2 - \sqrt{3}$$

(b) Prove that
$$\frac{\sin 2\theta}{1 + \cos 2\theta} = \tan \theta$$

Using the t Method

Let
$$\tan \theta = t$$
 then $\tan 2\theta = \frac{2t}{1-t^2}$,

$$\sin 2\theta = \frac{2t}{1+t^2} \text{ and } \cos 2\theta = \frac{1-t^2}{1+t^2}$$

$$\frac{\sin 2\theta}{1 + \cos 2\theta} = \frac{1 + t^2}{1 + \frac{1 - t^2}{1 + t^2}}$$

$$\frac{\sin 2\theta}{1 + \cos 2\theta} = \frac{\frac{2t}{1 + t^2}}{\frac{1 + t^2}{1 + t^2} + \frac{1 - t^2}{1 + t^2}}$$

$$\frac{\sin 2\theta}{1 + \cos 2\theta} = \frac{\frac{2t}{1 + t^2}}{\frac{1 + t^2}{1 + t^2}}$$

$$\frac{\sin 2\theta}{1 + \cos 2\theta} = t$$

$$\frac{\sin 2\theta}{1 + \cos 2\theta} = \tan 2\theta$$

$$\frac{\sin 2\theta}{1 + \cos 2\theta} = \tan 2\theta$$

$$\frac{\sin 2\theta}{1 + \cos 2\theta} = \frac{2\sin \theta \cos \theta}{1 + 2\cos^2 \theta - 1}$$

$$\frac{\sin 2\theta}{1 + \cos 2\theta} = \frac{2\sin \theta \cos \theta}{2\cos^2 \theta}$$

$$\frac{\sin 2\theta}{1 + \cos 2\theta} = \frac{\sin \theta}{\cos \theta}$$

$$\therefore \frac{\sin 2\theta}{1 + \cos 2\theta} = \tan \theta$$

3

(c) Solve the equation $\sqrt{3} \sin \theta - \cos \theta = 1$ for $0 \le \theta \le 2\pi$

Using $a \sin \theta - b \cos \theta = r \sin(\theta - \alpha)$ where $r = \sqrt{a^2 + b^2}$ and $\tan \alpha = \frac{b}{a}$, α acute

$$a = \sqrt{3}$$
, $b = -1$ $\Rightarrow r = \sqrt{3+1}$ and $r = 2$ $\alpha = \frac{\pi}{6}$

$$\therefore \sqrt{3} \sin \theta - \cos \theta = 2 \sin(\theta - \frac{\pi}{6})$$

$$\therefore 2 \sin(\theta - \frac{\pi}{6}) = 1$$

$$\sin(\theta - \frac{\pi}{6}) = \frac{1}{2}$$

$$\theta - \frac{\pi}{6} = \frac{\pi}{6}, \frac{5\pi}{6}$$

$$\theta = \frac{\pi}{3}, 2\pi$$

(d) A ship, S, is sailing on a straight course for an oil rig, R, on a bearing of 050°. At the same time, a lighthouse, L, is sighted in a direction of 012°. The charts indicate that the bearing from the rig to the lighthouse is 340°, and a distance of 18 km from it.

1

2

(i) Draw a diagram showing the above information

(ii) Find the distance from the ship to the oil rig correct to the nearest metre

$$\frac{x}{\sin 32^\circ} = \frac{18}{\sin 38^\circ}$$
$$x = \frac{18\sin 32^\circ}{\sin 38^\circ}$$
$$x = 15.493km$$

END OF QUESTION 4

QUESTION 5 (Start a New Page) (12 Marks)

(a) Show
$$\frac{\sin 2\theta}{\sin \theta} - \frac{\cos 2\theta}{\cos \theta} = \sec \theta$$

$$\frac{\sin 2\theta}{\sin \theta} - \frac{\cos 2\theta}{\cos \theta} = \frac{\cos \theta \sin 2\theta}{\sin \theta \cos \theta} - \frac{\sin \theta \cos 2\theta}{\sin \theta \cos \theta}$$

$$\frac{\sin 2\theta}{\sin \theta} - \frac{\cos 2\theta}{\cos \theta} = \frac{\sin(2\theta - \theta)}{\sin \theta \cos \theta}$$

$$\frac{\sin 2\theta}{\sin \theta} - \frac{\cos 2\theta}{\cos \theta} = \frac{\sin \theta}{\sin \theta \cos \theta}$$

$$\frac{\sin 2\theta}{\sin \theta} - \frac{\cos 2\theta}{\cos \theta} = \frac{1}{\cos \theta}$$

2

2

(b) Sketch
$$f(x) = ||x-2|-1|$$

By inspection of critical points x = 1, x = 2, x = 3 and sketching

$$f(x) = 4x^2 + 5$$

Let there be a small increase in x, by h

$$f(x+h) = 4(x+h)^2 + 5$$

$$f(x+h) = 4(x^2 + 2hx + h^2) + 5$$

$$f(x+h) = 4x^2 + 5 + 8hx + 4h^2$$

Now the gradient of the tangent is given by

$$f'(x) = \lim_{h \to \infty} \frac{f(x+h) - f(x)}{h}$$

$$f'(x) = \lim_{h \to \infty} \frac{4x^2 + 5 + 8hx + 4h^2 - (4x^2 + 5)}{h}$$

$$f'(x) = \lim_{h \to \infty} \frac{8hx + 4h^2}{h}$$

$$f'(x) = \lim_{h \to \infty} 8x + 4h$$

$$f'(x) = 8x$$

- (d) For the curve $y = x^2(x^2 1)$,
 - (i) Find the derivative $\frac{dy}{dx}$

$$\frac{dy}{dx} = 2x(x^2 - 1) + x^2(2x)$$
$$\frac{dy}{dx} = 2x(x^2 - 1 + x^2)$$
$$\frac{dy}{dx} = 2x(2x^2 - 1)$$

(ii) Hence or otherwise, find the equation of the normal at the point (1, 0)

At x=1

$$y - y_1 = m(x - x_1)$$

$$y - 0 = \frac{-1}{2}(x - 1)$$

$$y = \frac{-x}{2} + \frac{1}{2}$$

$$or$$

$$x + 2y - 1 = 0$$

At (1, 0) and
$$m = \frac{-1}{2}$$

(e) The straight line joining the centre O, of a circle to an external point T, cuts the circumference of the circle at Z. TZ = 32 cm and the tangent to the circle from T is 40 cm long.

1

2

2

(i) Draw a diagram to represent this information

2

1

2

(ii) Calculate the radius of the circle giving reasons for your answer

Let the radius of the circle be r and the pt of contact with the radius and the tangent be Y

$$TY \perp OY$$
 (radius of circle \perp tangent at pt of contact)

Therefore $r^{2} + 40^{2} = (r + 32)^{2}$ $r^{2} + 1600 = r^{2} + 64r + 1024$ 64r = 576 r = 9cm

END OF QUESTION 5

i.e. $-4 \ge x \ge -1$

QUESTION 6 (Start a New Page) (12 Marks)

i.e. $-2 \le x \le 7$

(a) Solve for x:	$\left x^2 - 5\right \le 5x + 9$		
When $ x^2 - 5 > 0$		When $\left x^2 - 5\right < 0$	
$x^2 - 5 \le 5x + 9$		$x^2 - 5 \ge -5x - 9$	
$x^2 - 5x - 14 \le 0$		$x^2 + 5x + 4 \ge 0$	
$(x-7)(x+2) \le 0$		$(x+4)(x+1) \ge 0$	
Critical Points -2 and 7		Critical Points -4 and -1	
Testing Points			
As $x \rightarrow -2^{-}$	$(x-7)(x+2) \ge 0$	As $x \to -4^ (x+4)(x+1) \ge 0$	
As $x \rightarrow -2^+$	$(x-7)(x+2) \le 0$	As $x \to -4^+$ $(x+4)(x+1) \le 0$	
As $x \rightarrow 7^-$	$(x-7)(x+2) \le 0$	As $x \rightarrow -1^ (x+4)(x+1) \le 0$	
As $x \rightarrow 7^+$	$(x-7)(x+2) \ge 0$	As $x \rightarrow -1^+$ $(x+4)(x+1) \ge 0$	

 $\therefore -1 \le x \le 7$

- (b) The equation $x^3 + px^2 + qx + pq = 0$, where $p \neq 0$ and $q \neq 0$ has 3 real roots α , β and γ .
 - (i) By considering the relationships between the roots and the coefficients of the equation, show that $(\alpha + \beta + \gamma) \left(\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} \right) = 1$

$$(\alpha + \beta + \gamma) = \frac{-b}{a}$$

$$(\alpha + \beta + \gamma) \left(\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}\right) = -p \times \frac{-1}{p}$$

$$(\alpha + \beta + \gamma) \left(\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}\right) = 1$$

$$(\alpha + \beta + \gamma) \left(\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}\right) = 1$$

$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{\alpha\beta + \alpha\gamma + \beta\gamma}{\alpha\beta\gamma}$$

$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{\frac{c}{a}}{-\frac{d}{a}}$$

$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{q}{-pq}$$

$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{-1}{p}$$

(ii) Show that -p is a root of the equation. Hence show that q<0.

If
$$-p$$
 is a root, then $P(-p) = 0$
 $P(-p) = (-p)^3 + p(-p)^2 + q(-p) + pq$
 $P(-p) = -p^3 + p^3 - pq + pq$
 $P(-p) = 0$

Therefore -p is a root

$$x^{3} + px^{2} + qx + pq = x^{2}(x+p) + q(x+p)$$

 $x^{3} + px^{2} + qx + pq = (x+p)(x^{2} + q)$

Therefore
$$P(x) = 0$$
 when $(x+p) = 0$ OR $(x^2 + q) = 0$

$$x^2 = -q$$

$$BUT$$
So either $x = -p$ OR $x^2 \ge 0$

$$\therefore -q > 0$$

$$\therefore q < 0$$

(c) The quadratic equation $x^2 - x + k = 0$, where k is a real number has 2 distinct, positive real roots.

(i) Show that
$$0 < k < \frac{1}{4}$$

2

$$\Delta = b^2 - 4ac$$
$$\Delta = 1 - 4k$$

2

2

For 2 distinct, positive real roots, $\Delta > 0$ and the product of the roots is positive

$$1-4k>0$$

$$1>4k$$

$$\alpha\beta>0$$
So $\frac{1}{4}>k$
and
$$\frac{c}{a}>0$$

$$k<\frac{1}{4}$$

Therefore $0 < k < \frac{1}{4}$

ii) Let the two roots be
$$\alpha$$
 and β . Show that $\alpha^2 + \beta^2 = 1 - 2k$ and deduce that
$$\frac{1}{2} < \alpha^2 + \beta^2 < 1$$

$$\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha\beta$$

$$\alpha^{2} + \beta^{2} = 1^{2} - 2k$$

$$\alpha + \beta = \frac{-b}{a}$$

$$\alpha + \beta = 1$$

From (i) above

$$0 < k < \frac{1}{4}$$

$$0 < 2k < \frac{1}{2}$$

$$0 > -2k > \frac{-1}{2}$$

$$1 > 1 - 2k > \frac{1}{2}$$

$$\frac{1}{2} < 1 - 2k < 1$$

$$\frac{1}{2} < \alpha^2 + \beta^2 < 1$$

END OF EXAMINATION