Name:	
Teacher:	

GOSFORD HIGH SCHOOL

2015 PRELIMINARY YEARLY EXAMINATION.

Mathematics Extension 1

General Instructions:

- Reading time 5 minutes
- Working time 1½ hours
- Write using black or blue pen.
- Board-approved calculators may be used.
- In Questions 6 − 9, show relevant mathematical reasoning and/or calculations

Total Marks - 53

Section I - 5 marks Answer on the sheet provided

Section II – 48 marks Attempt Questions 6 – 9 Answer in the booklets provided

	Marks
Multiple Choice	/5
Polynomials	/ 10
Question 7	/13
Question 8	/ 13
Question 9	/12
TOTAL	/53

Section I

5 multiple choice questions worth 1 mark each.

Attempt Questions 1-5.

Answer on the multiple choice answer sheet provided.

1. In the diagram, AB is a chord of a circle with centre O such that $\angle AOB = 80^{\circ}$. C is a point on the circle such that BC = BA. What is the size of $\angle ABC$?

- **A)** 90°
- B) 100°
- C) 110°
- **D)** 120°
- 2. A(-2,5) and B(4,-1) are two points. What are the coordinates of the point P(x,y) that divides AB internally in the ratio 2 : 1?
 - **A)** (-5,8)
- **B)** (0,3)
- **C)** (2,1)
- **D)** (7,-4)
- 3. Which of the following is an expression for cos(A B) cos(A + B)?
 - A) 2sinAsinB

B) 2cosAcosB

c) $-2\cos A\cos B$

D) -2sinAsinB

- 4. The curves $y = 3x^2$ and $y = 4x x^2$ meet at the point (0,0). What is the size of the acute angle between the curves at this point?
 - A) 0°
- B) 38° 40′
- C) 68° 41′
- **D)** 75° 58′
- 5. Which of the following is an expression for $\frac{(n+2)!-n!}{(n+1)!}$?
 - $A) \qquad \frac{n^2 + 3n + 1}{n + 1}$

 $B) \qquad \frac{n^2 + 3n + 2}{n + 1}$

 $C) \qquad \frac{n^2 + 2n + 2}{n + 1}$

 $\mathbf{D)} \qquad \frac{n^2 + 2n + 3}{n + 1}$

Section II

48 Marks.

Attempt Questions 6 - 9.

Answer the questions in the writing booklets provided. Start each question in a new booklet.

Your responses should include relevant mathematical reasoning and/or calculations.

Question 6 (10 marks)

Start a new booklet.

- a) Consider the polynomial $P(x) = 2x^3 5x^2 4x + 3$
 - i) Show that (x + 1) is a factor of P(x).

1

ii) Solve the equation P(x) = 0.

3

b) The polynomial P(x) is such that P(x) = (x-1)(x-2)Q(x) + 3x + k for some polynomial Q(x) and some constant, k. If the remainder is -1 when P(x) is divided by (x-1), find the remainder when P(x) is divided by (x-2).

- c) Given the polynomial $P(x) = (x-1)(x+2)^2$
 - i) Draw a neat sketch of y = P(x).

2

ii) Solve P(x) < 0.

2

Question 7 (13 marks)

Start a new booklet.

- a) The point (0,4) divides the interval joining the points (a,b) and (b,a) externally in the ratio 3:1. Find the value of a and b.
- b) Find the value(s) of m, such that the acute angle between the lines y = 2x and y = mx is 45°.

c)

In the diagram, AB is a diameter of a circle with centre O. C and D are points on the Circle. OD cuts AC at M. The tangent to the circle at D cuts BC produced at N. Show That MCND is a cyclic quadrilateral.

- d) Find the number of ways in which the letters of the word FORMULA can be arranged in a line:
 - i) without restriction

1

ii) so that the 4 consonants are all next to each other and the 3 vowels are all next to each other.

2

e) Draw a neat sketch of y=f(x), where $f(x)=\frac{2x^2}{x^2-9}$, showing any asymptotes and intercepts.

Question 8 (13 marks)

Start a new booklet.

- a) Solve the inequality $\frac{x^2-4}{x} > 0$.
- b) Express $sinx + \sqrt{3}cosx$ in the form $Rsin(x + \alpha)$, where α is acute and R > 0. Hence solve $sinx + \sqrt{3}cosx = 1$ for $0^{\circ} \le x \le 360^{\circ}$.
- c) Use the substitution $t = tan \frac{x}{2}$, to solve cosx + 2sinx = -1, for $0^{\circ} \le x \le 360^{\circ}$. Give your answer(s) correct to the nearest minute.

d)

3

In the diagram, MAN is a tangent to the circle at A. BC is a chord of the circle such that $BC \parallel MN$. D is a point on the circle. Show that AD bisects $\angle BDC$.

Question 9 (12 marks)

Start a new booklet.

a) Prove that
$$\frac{\sin A}{\cos A + \sin A} + \frac{\sin A}{\cos A - \sin A} = \tan 2A$$

- 6 boys and 5 girls are available for selection in a mixed team of seven players.
 Find the number of ways that the team can be chosen if it has to contain at least 3 girls and at least 3 boys.
- c) Solve the equation tan2x + tanx = 0, for $0^{\circ} \le x \le 180^{\circ}$.
- d) From a point A due south of a tower, the angle of elevation of the top of the tower T, is 23°. From another point B, on a bearing of 120° from the tower, the angle of elevation of T is 32°. The distance AB is 200 metres.

- Copy the diagram into your writing booklet, adding the given information to your diagram.
- ii) Find the height of the tower, to the nearest metre. 3

End of Examination