

HURLSTONE AGRICULTURAL HIGH SCHOOL

YEARLY EXAMINATION 2008

PRELIMINARY COURSE ASSESSMENT TASK 3

Mathematics Extension 1

Examiners ~ G.Huxley, J.Dillon, D.Crancher, H.Cavanagh, S.Faulds

GENERAL INSTRUCTIONS

- Reading time 5 minutes.
- Working time $-1\frac{1}{2}$ hours.
- This test has 5 questions. Attempt all questions.
- Each question is worth 12 marks. Total: 60 marks.
- All necessary working should be shown in each question. Marks may not be awarded for careless or badly arranged work.
- Start each question in a new booklet. Write your student number on every sheet.
- This test must **NOT** be removed from the examination room.
- Board approved calculators and mathematical templates may be used.

QUESTION 1: Start a new booklet.

Marks

(a) Find $\lim_{x \to 3} \frac{x^2 + 2x - 15}{x - 3}$

2

- (b) Use the definition of the derivative, $f'(x) = \lim_{h \to 0} \frac{f(x+h) f(x)}{h}$, to find f'(x) when $f(x) = x^2 2x + 5$
- (c) Find the derivative of $y = 5x^4 3x^2 + 2 \frac{1}{x^2}$
- (d) Differentiate with respect to x:
 - (i) $y = (x+2)(x-5)^2$

2

2

(ii) $y = \frac{3x+2}{5x-1}$

2

(e) Find the equation of the tangent to $y = x\sqrt{x}$ at the point P(4, 8)

QUESTION 2: Start a new booklet.

Marks

(a) In the diagram, $\triangle ABC$ is right angled at B, BD $\perp AC$ and $\triangle ABC ||| \triangle BDC$.

(i) Prove $\triangle ABC ||| \triangle ADB$.

2

(ii) Given also that $\Delta BDC ||| \Delta ABC$, Show, giving reasons using similar triangles, that

$$AD+DC=\frac{AB^2+BC^2}{AC}$$
.

(Note: You must ${f not}$ use Pythagoras to answer part (ii))

2

(iii) Use the result obtained in (ii) to prove Pythagoras' Theorem for $\triangle ABC$. 1

(b)

The diagram shows $\triangle ABC$ where D and E are midpoints of AB and AC respectively and DE||BC. Find, giving a reason, DE: BC.

(c)

Marks

In the diagram above, EF||GH||IJ. If EG = 3, GI = 5 and FJ = 20, find FH. Show all reasoning in your answer.

(d) Solve the inequality:

$$\frac{\left|x-1\right|}{x}<2$$

- (a) Which of the points D(-3, 9) or E(8, -5) is nearer the origin? Justify your answer by using mathematical calculations.
- (b) Find to the nearest degree, the acute angle formed by the lines 5x-y+1=0 and x-3y-2=0
- (c) For the points A(-5, -1) and B(1, 0):
 - (i) Write down the coordinates of the P, the point that divides AB in the ratio k:1. (i.e. k: one)
 - (ii) If P lies on xy = 1, show that $k^2 + 3k 4 = 0$
 - (iii) Hence, or otherwise, find the coordinates of the points where the line AB meets xy = 1

QUESTION 4: Start a new booklet.

Marks

(a)

- (i) Write down the expansion of $cos(\alpha + \beta)$.
- (ii) Hence find the exact value of cos 75°.
- (b) Solve the equation $\sin 2x = \tan x$ for $0 \le x \le \pi$
- (c) If $\cos A = \frac{7}{9}$ and $\sin B = \frac{1}{3}$ where A and B are acute angles, show that A = 2B by proving that $\cos 2B = \cos A$.
- (d) A surveyor who is y metres south of a tower sees the top of it with an angle of elevation 8°. A second surveyor is x metres east of the tower.
 From his position the angle of elevation is 10° to the top of the tower.
 The two surveyors are 940m apart.

NOT TO SCALE

- (i) Show that $y = h \tan 82^{\circ}$
- (ii) Show that the height of the tower, h, is given by

$$h = \frac{940}{\sqrt{\tan^2 80^\circ + \tan^2 82^\circ}}$$

(iii) Hence find the height of the tower to the nearest metre.

QUESTION 5: Start a new booklet

Marks

a) CX is tangent to the circle centre O. Let $\angle CAB = \alpha$.

- i) Find ∠COB with reasons
- 1
- ii) Find ∠OCB with reasons
- 1
- iii) Show that $\angle BCX = \angle BAC$

1

NOT TO SCALE

b)

NOT TO SCALE

In the diagram, points A, B and C lie on the circle.

Line PQ is a tangent to the circle at A.

Line QD is parallel to AB, meeting BC produced at D.

Prove that ACDQ is a cyclic quadrilateral.

c)

Marks

In the diagram, O is the centre of the circle.

AC is a tangent at B.

D and E are points on the circumference.

If \angle ABD = 80° and \angle DBE = 40°, find the size of \angle BEO, giving reasons.

d)

In the diagram, AB and CD are common tangents to the two circles.

The two tangents meet externally at X.

Explain why $AC \parallel BD$.